We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We continue the research of the relation
$\hspace {1mm}\widetilde {\mid }\hspace {1mm}$
on the set
$\beta \mathbb {N}$
of ultrafilters on
$\mathbb {N}$
, defined as an extension of the divisibility relation. It is a quasiorder, so we see it as an order on the set of
$=_{\sim }$
-equivalence classes, where
$\mathcal {F}=_{\sim }\mathcal {G}$
means that
$\mathcal {F}$
and
$\mathcal {G}$
are mutually
$\hspace {1mm}\widetilde {\mid }$
-divisible. Here we introduce a new tool: a relation of congruence modulo an ultrafilter. We first recall the congruence of ultrafilters modulo an integer and show that
$=_{\sim }$
-equivalent ultrafilters do not necessarily have the same residue modulo
$m\in \mathbb {N}$
. Then we generalize this relation to congruence modulo an ultrafilter in a natural way. After that, using iterated nonstandard extensions, we introduce a stronger relation, which has nicer properties with respect to addition and multiplication of ultrafilters. Finally, we introduce a strengthening of
$\hspace {1mm}\widetilde {\mid }\hspace {1mm}$
and show that it also behaves well with respect to the congruence relation.
In this paper, we obtain the projective cover of the orbit space X/G in terms of the orbit space of the projective space of X, when X is a Tychonoff G-space and G is a finite discrete group. An example shows that finiteness of G is needed.
It is known that if a topological property of Tychonoff spaces is closed-hereditary, productive and possessed by all compact Hausdorff spaces, then each (0-dimensional) Tychonoff space X is a dense subspace of a (0-dimensional) Tychonoff space with such that each continuous map from X to a (0-dimensional) Tychonoff space with admits a continuous extension over . In response to Broverman's question [Canad. Math. Bull. 19 (1), (1976), 13–19], we prove that if for every two 0-dimensional Tychonoff spaces X and Y, if and only if , then is contained in countable compactness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.