We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Uncontrolled epilepsy creates a constant source of worry for patients and puts them at a high risk of injury. Identifying recurrent “premonitory” symptoms of seizures and using them to recalibrate seizure prediction algorithms may improve prediction performances. This study aimed to investigate patients’ ability to predict oncoming seizures based on preictal symptoms.
Methods:
Through an online survey, demographics and clinical characteristics (e.g., seizure frequency, epilepsy duration, and postictal symptom duration) were collected from people with epilepsy and caregivers across Canada. Respondents were asked to answer questions regarding their ability to predict seizures through warning symptoms. A total of 196 patients and 150 caregivers were included and were separated into three groups: those who reported warning symptoms within the 5 minutes preceding a seizure, prodromes (symptoms earlier than 5 minutes before seizure), and no warning symptoms.
Results:
Overall, 12.2% of patients and 12.0% of caregivers reported predictive prodromes ranging from 5 minutes to more than 24 hours before the seizures (median of 2 hours). The most common were dizziness/vertigo (28%), mood changes (26%), and cognitive changes (21%). Statistical testing showed that respondents who reported prodromes also reported significantly longer postictal recovery periods compared to those who did not report predictive prodromes (P < 0.05).
Conclusion:
Findings suggest that patients who present predictive seizure prodromes may be characterized by longer patient-reported postictal recovery periods. Studying the correlation between seizure severity and predictability and investigating the electrical activity underlying prodromes may improve our understanding of preictal mechanisms and ability to predict seizures.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.