We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Measuring chemical weathering histories in submarine fan deposits is critical if the impact of orogenic erosion on atmospheric CO2 levels is to be understood, yet existing records are often noisy and hard to interpret. In this study, we selected mudstones from two International Ocean Discovery Program (IODP) sites from the Indus submarine fan and carefully removed the biogenic carbonate. The resulting records of chemical weathering show two trends, one of reducing chemical alteration since ∼8 Ma and which is associated with the Indus River, while a second trend is linked to sediment delivery from peninsular India. The second trend shows little temporal variation. Sediment deposited at IODP Site U1456 in the central Laxmi Basin is preferentially, but not exclusively, Indus-derived, while that at Site U1457 on the eastern flank of Laxmi Ridge is more peninsula-derived. Both trends show much less variability than seen in earlier studies in which various grain-size fractions were integrated together. The efficiency with which CO2 is removed from the atmosphere during chemical weathering has decreased over time in the Indus River-derived material. This reflects both lower degrees of alteration in the sediment since the late Miocene and increasing derivation of sediment from Himalayan sources, rather than more mafic Karakoram-Kohistan rocks. Previous estimates of CO2 consumption have overestimated the contribution that the Indus Basin has made to reducing atmospheric CO2 by ∼28–68%. This work emphasizes the importance of analysing appropriate largely silt-sized sediment when considering submarine fan records and in rigorously removing biogenic carbonate.
The present study aims to determine the chronology of the past settlement of the different archaeological sites of the Digaru–Kolong River valley (Assam-Meghalaya Foothills), India, based on accelerator mass spectrometry (AMS) 14C dates of seven charcoal samples, five potsherds, and five sediment samples. The archaeological record of the study area consists of ground and polished stone axes and adzes, pottery, and standing or buried megaliths. The samples analyzed were excavated from test pits, and an attempt has been made to correlate the findings with the chronology of the neighboring archaeological region. A site reported in the vicinity of the study area is primarily Neolithic. However, the results from our excavations indicate a time frame for the analyzed artifacts of ca. 240 CE to 1379 CE.
Clay minerals were used as indicators for determining the source of sediment in recently dredged harbors along the north shore of Long Island Sound. Amount and characteristics of clay minerals in sediments from the dredged channels were compared to their amount and characteristics in the surrounding soils and in sediments from Long Island Sound. Clay minerals in sediments from the channels were similar in amount and characteristics to clay minerals in sediments from Long Island Sound but differed from those in the surrounding soils in the watershed. Thus, the main source of deposits in the channels is the bottom sediment of Long Island Sound which is transported to the channels by tidal action. These conclusions are supported by recent studies of the bottom currents in the Sound.
Greigites from a gley and a Tertiary sediment were investigated by X-ray diffraction and Mössbauer spectroscopy. The cell-edge length a of 9.8639 Å ± 0.0003 Å for the soil greigite was significantly smaller than that of the sedimentary greigite (9.8737 Å ± 0.0004 Å), but both cell-edge lengths were smaller than the value given on JCPDS card #16-713 (9.876 Å). Both greigites had 440 as strongest peak rather than 311 (as indicated on JCPDS card #16-713), but the other relative intensities did not deviate from the values given on this card within experimental error. Mean X-ray diffraction coherence lengths of 23 ± 2 nm for the soil greigite and of 60 ± 5 nm for the sedimentary greigite suggest superparamagnetic behavior. Mössbauer spectra nevertheless comprised two sextets with hyperfine fields of about 31.2 T (tetrahedral sites) and 30.7 T (octahedral sites), which resemble published values. It is postulated that aggregation may play an important role in determining the magnetic properties of the described samples.
Reported in this paper is a study of the influence of pore fluid composition on sediment volume of kaolinite suspensions. Laboratory tests have been conducted with kaolinite in water with NaCl, CaCl2 and A1C13 of different concentrations and in 10 types of organic liquids of varying values of static dielectric constant. The types of tests performed include regular suspension tests and leaching and cyclic leaching tests on kaolinite sediments. In the leaching tests, sediments formed during the regular suspension tests in water of low salt concentration were subsequently leached with water of high salt concentration. In the cyclic leaching tests, the salt concentration was increased and then decreased. The purpose of the leaching and cyclic leaching tests was to study the change in existing equilibrium fabric caused by subsequent changes in the concentration of salt in pore fluid. Results of the suspension tests indicate that sediment volume of a water suspension decreases with increase in ion concentration and increase in valence of cation. Leaching and cyclic leaching tests indicate that substantial change in salt concentration is required to change the existing fabric. The effect of dielectric constant of pore fluid on sediment volume is somewhat complex. As the dielectric constant increases from 1.9 for heptane to 110 for formamide, sediment volume first decreases, assuming a minimum at 24 for ethanol, increases with a maximum at 80 for water, and decreases again until 110 for formamide. An approximate physico-chemical analysis model is used to interpret some of the data in a quantitative manner. In the analysis model, recently developed theories of double-layer repulsive and van der Waals attractive forces are combined to simulate the behavior of suspensions.
This article discusses ethical frameworks for planning and implementing composite research in the United States. Composites, defined here as archaeological materials with multiple genetic sources, include materials such as sediment, coprolites, birch pitch, and dental calculus. Although composites are increasingly used in genetic research, the ethical considerations of their use in ancient DNA studies have not been widely discussed. Here, we consider how composites’ compositions, contexts, and potential to act as proxies can affect research plans and offer an overview of the primary ethical concerns of ancient DNA research. It is our view that ethical principles established for analyses of Ancestral remains and related materials can be used to inform research plans when working with composite evidence. This work also provides a guide to archaeologists unfamiliar with genetics analyses in planning research when using composite evidence from the United States with a focus on collaboration, having a clear research plan, and using lab methods that provide the desired data with minimal destruction. Following the principles discussed in this article and others allows for engaging in composite research while creating and maintaining positive relationships with stakeholders.
The Paisley Cave archeological site in the Northern Great Basin has provided a rich archaeological record from 13,000 to 6000 cal yr BP, including abundant mammalian coprolites preserved in a well-dated stratigraphy. Here we analyze and contrast pollen from within coprolites and pollen in associated sediments to examine vegetation history and assess whether coprolite pollen provides unique information with respect to the coprolite producer, such as the use of specific habitats, foods, or water sources. We found that the dissimilarity of pollen assemblages between coprolites and associated sediments was greater than the serial dissimilarity between stratigraphically adjacent samples within either group. Serial dissimilarity within types was not greater for coprolites than sediments, as would be expected if there were unique pollen signatures derived from the short period (1–2 days) represented by each coprolite. Compared with sediment pollen assemblages, the coprolites had higher abundances of lighter pollen types, and some individual samples were high in wetland taxa (especially Typha). Our results are consistent with coprolite pollen representing short time periods collected as a mammal moves on the landscape, whereas sediment pollen reflects longer time periods and more regional vegetation indicators.
The Eocene-Oligocene Transition at c. 34 million years ago (Ma) marked the global change from greenhouse to icehouse and the establishment of the East Antarctic Ice Sheet (EAIS). How the ice-sheet behaviour changed during interglacials across this climate transition is poorly understood. We analysed major, trace and rare earth elemental data of late Eocene interglacial mudstone from Prydz Bay at Ocean Drilling Program Site 1166 and early Oligocene interglacial mudstone from Integrated Ocean Drilling Program Site U1360 on the Wilkes Land continental shelf. Both sites have comparable glaciomarine depositional settings. Lithofacies and provenance at Site 1166 in Prydz Bay are indicative of a late Eocene glacial retreat in the Lambert Graben. Palaeoclimate proxies, including the Chemical Index of Alteration, mean annual temperature and mean annual precipitation, show a dominant warm and humid palaeoclimate for the late Eocene interglacial. In contrast, at Site U1360, in the early Oligocene, the provenance and interglacial weathering regime remained relatively stable with conditions of physical weathering. These results confirm that the EAIS substantially retreated periodically during late Eocene interglacials and that subglacial basins probably remained partially glaciated during interglacials in the earliest Oligocene.
Studies on benthic foraminifera were conducted in the mangrove forests of Teluk Tempoyak, Pulau Betong and Kuala Sungai Pinang, Penang Island, Peninsular Malaysia to examine species composition and distribution patterns in different intertidal zones. Twenty-eight live benthic foraminiferal species were successfully identified at the study locations, predominantly species with agglutinated tests. Assemblages in Pulau Betong and Teluk Tempoyak were dominated by similar species such as Ammonia aoteana, Elphidium hispidulum, Elphidium neosimplex and Trochammina inflata, while Kuala Sungai Pinang comprises a high number of Trochammina inflata and Arenoparrella mexicana. Three species, Aubignyna perlucida, Elphidium neosimplex and Elphidium sandiegoense, were recorded for the first time in Malaysian mangrove forests. Principal component analysis showed that sediment type and organic matter content were the dominant parameters that explained the variation of environmental gradient. Canonical correspondence analysis of these parameters with benthic foraminiferal species indicated that sand particles influenced distribution of the hyaline tests. Species with agglutinated tests were abundant in sediment with rich organic matter in combination with high silt and clay content. Species with hyaline tests dominated lower intertidal zones, while those with agglutinated tests inhabited the area from the middle to upper intertidal zones. This distribution pattern of benthic foraminiferal species mirrored patterns found at other local and global mangrove locations.
Radiocarbon (14C) dating is often carried out upon multi-specimen samples sourced from bioturbated sediment archives, such as deep-sea sediment. These samples are inherently heterogeneous in age, but existing 14C calibration techniques were originally developed for age homogeneous material, such as archaeological artifacts or individual tree rings. A lack of information about age heterogeneity leads to a systematic underestimation of a sample’s true age range, as well as the possible generation of significant age-depth artifacts during periods of the Earth’s history coinciding with highly dynamic atmospheric Δ14C. Here, a new calibration protocol is described that allows for the application of sedimentological priors describing sediment accumulation rate, bioturbation depth and temporally dynamic species abundance. This Bayesian approach produces a credible calibrated age distribution associated with a particular laboratory 14C determination and its associated sedimentological priors, resulting in an improved calibration, especially in the case of low sediment accumulation rates typical of deep-sea sediment. A time-optimized computer script (biocal) for the new calibration protocol is also presented, thus allowing for rapid and automated application of the new calibration protocol. This new calibration protocol could be applied within existing age-depth modeling software packages to produce more accurate geochronologies for bioturbated sediment archives.
Paleoperspectives of climate provide important information for understanding future climate, particularly in arid regions such as California, where water availability is uncertain from year to year. Here, we present a record from Barley Lake, California, focusing on the interval spanning the Younger Dryas (YD) to the early Holocene (EH), a period of acute and rapid global climate change. Twelve radiocarbon dates constrain the timing between 12.9 and 8.1 ka. We combine a variety of sediment analyses to infer changes in lake productivity, relative lake level, and runoff dynamics. In general, the lake is characterized by two states separated by a <200-year transition: (1) a variably deep, lower-productivity YD lake; and (2) a two-part variably shallow, higher-productivity EH lake. Inferred EH winter-precipitation runoff reveals dynamic multidecadal-to-centennial-scale variability, in agreement with the EH lake-level data. The Barley Lake archive captures both hemispheric and regional signals of climate change across the transition, suggesting a role for both ocean-atmosphere and insolation forcing. Our paleoperspective emphasizes California's sensitivity to climate change and how that change can generate abrupt shifts in limnological regimes.
Heavy mineral analysis is a long-standing and valuable tool for sedimentary provenance analysis. Many studies have indicated that heavy mineral data can also be significantly affected by hydraulic sorting, weathering and reworking or recycling, leading to incomplete or erroneous provenance interpretations if they are used in isolation. By combining zircon U–Pb geochronology with heavy mineral data for the southern North Sea Basin, this study shows that the classic model of sediment mixing between a northern and a southern source throughout the Neogene is more complex. In contrast to the strongly variable heavy mineral composition, the zircon U–Pb age spectra are mostly constant for the studied samples. This provides a strong indication that most zircons had an initial similar northern source, yet the sediment has undergone intense chemical weathering on top of the Brabant Massif and Ardennes in the south. This weathered sediment was later recycled into the southern North Sea Basin through local rivers and the Meuse, leading to a weathered southern heavy mineral signature and a fresh northern heavy mineral signature, yet exhibiting a constant zircon U–Pb age signature. Thus, this study highlights the necessity of combining multiple provenance proxies to correctly account for weathering, reworking and recycling.
This chapter focuses on the factors that influence the erosion, transport, and storage of sediment at global and drainage-basin scales. It examines global variations in sediment fluxes by rivers and the factors that influence these variations, including human effects. It introduces the concepts of the sediment delivery ratio and the sediment budget, and demonstrates how estimation of sediment budgets provides insight into spatial patterns of sediment production, storage, and transport within drainage basins. It also shows how sediment budgets have been used to understand human impacts on sediment dynamics at drainage-basin scales and discusses the value of sediment budgets for watershed management. It reviews approaches that have been used to try to examine sediment movement at watershed scales, such as various fine-sediment tracing technologies, and addresses challenges to estimating sediment dynamics at large scales, including the sediment-budget closure problem.
Sediment transport in rivers provides a dynamic linkage between flow and channel form. Topics examined in this chapter include differences among wash load, suspended bed-material load, and bedload; entrainment of particles on the bed into motion and into suspension; flow competence; the influence of particle mixtures on entrainment relations; the major factors influencing concentration profiles of suspended sediment in river flows; mechanisms of bedload transport and approaches to the development of bedload and bed-material transport equations; and factors that complicate understanding and prediction of bed-material transport in rivers, including armoring, bedforms, modality, particle–particle interactions, spatial-temporal variability, turbulence, and the validity of transport threshold relations. The use of particle-tracing methods in combination with information on channel change to estimate bed-material transport is also presented.
Research on producer willingness to adopt individual best pasture management practices (BMPs) is extensive, but less attention has been paid to producers simultaneously adopting multiple, complementary BMPs. Applications linking primary survey data on BMP adoption to water quality biophysical models are also limited. A choice-experiment survey of livestock producers is analyzed to determine willingness to adopt pasture BMPs. Sediment abatement curves are derived by linking estimates of producer responsiveness to incentives to adopt rotational grazing with a biophysical simulation model. Current cost share rates of $24/acre should yield a 12% decrease in sediment loading from pastures.
We examined the radiocarbon (14C) reservoir effect in Lake Kutubu using tephrochronology and terrestrial plant material to deliver a precise age-depth profile and sedimentation rates for this lake. Based on the presence of two tephra horizons (Tibito and Olgaboli), we found a reservoir age offset in sediments of between 1490 and 2280 14C yr using the sediment ages derived from the lead-210 (210Pb) dating method. The live submerged biological samples collected exhibited a higher reservoir age offset than the sediment. This is most likely a result of delayed transport of “bomb” 14C from the atmosphere to aquatic and sedimentary system. The 14C reservoir effect increased with distance from the lake inlet and also decreased with depth. Dissolution of 14C-depleted carbon from surrounding limestone and direct in-wash of old soil or vegetation remnants from the catchment are the most likely causes of the 14C reservoir effect. Based on limestone areas mapped in Papua New Guinea, we indicate lakes which may be subject to a significant 14C reservoir effect. The results of this study demonstrate the magnitude of the 14C reservoir effect in lakes and provide insights to the correct interpretation of past environmental and archaeological events in PNG.
Determination of the solid-phase arsenic speciation in sediments hosting high-arsenic groundwaters, utilized for drinking and irrigation in Bengal, SE Asia and elsewhere is important in order to understand the biogeochemistry of arsenic. Despite this, there is a relative paucity of speciation data for solid-phase arsenic in such systems, due to preservation difficulties, low arsenic concentrations in the sediments, multiple coordination environments and sample heterogeneity. In this study, X-ray absorption near edge structure spectroscopy was used in conjunction with linear least-squares fitting of model compounds to determine the oxidation state of arsenic in sediments from West Bengal and Cambodia. Whatever the collection and storage method used, substantial oxidation of arsenic was commonly observed over periods of weeks to several months. Sands were particularly susceptible to changes in arsenic oxidation state during storage. Analysis within two or three weeks of collection is therefore recommended, whilst on-site storage under a nitrogen atmosphere immediately after collection is particularly recommended for the preservation of sandy samples. Both muds and sands from West Bengal and Cambodia were dominated by arsenite (As(III)) with <35±10% arsenate (As(V)). Complete oxidation to arsenate was never observed suggesting that a significant proportion of the sedimentary arsenic is inaccessible within crystalline phases. Centrifuging under anaerobic conditions enabled more detailed information about a variety of arsenic coordination environments to be determined.