We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter we discuss experiments in cavity QED and ion traps. We first discuss the nature of Rydberg atoms which are used in cavity QED experiments. The experimental realization of the Jaynes––Cummings model is discussed, as are the generation of Schrödinger-cat states in dispersive atom––field interactions in cavity QED. The quantum non-demolition measurement is discussed. The realization of the Jaynes––Cummings model in the context of trapped ions is discussed.
Experimental chapter that presents examples of quantum processes concerning single quantum systems, i.e. sequences comprising a state preparation part, an evolution or propagation part due to the interaction with the outer world, and a detection part. The whole sequence is repeated and its successive results stored. The examples concern quantum control of trapped ions and microwave photonsinteracting in a nondestructive way with Rydberg state cavities. It also presents "boson sampling" of photons placed in a multimode linear interferometer, a system likely to exhibit "quantum advantage," atoms trapped in an optical lattice, a promising platform for quantum simulation of complex systems, generation of "Schrödinger cats" in superconducting circuits.
Experimental chapter that presents experimental devices that allow us to detect individual quantum systems and observe quantum jumps occurring at random times. Described: superconducting single photon detectors, detection of arrays of ions and atoms, the shelving technique that allows us to measure the quantum state of the single atom, state selective field ionization of single Rydberg atoms, detection of single molecules on a surface by confocal microscopy, articial atoms in circuit quantum electrodynamics (cQED)
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.