We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article we consider the estimation of the log-normalization constant associated to a class of continuous-time filtering models. In particular, we consider ensemble Kalman–Bucy filter estimates based upon several nonlinear Kalman–Bucy diffusions. Using new conditional bias results for the mean of the aforementioned methods, we analyze the empirical log-scale normalization constants in terms of their
$\mathbb{L}_n$
-errors and
$\mathbb{L}_n$
-conditional bias. Depending on the type of nonlinear Kalman–Bucy diffusion, we show that these are bounded above by terms such as
$\mathsf{C}(n)\left[t^{1/2}/N^{1/2} + t/N\right]$
or
$\mathsf{C}(n)/N^{1/2}$
(
$\mathbb{L}_n$
-errors) and
$\mathsf{C}(n)\left[t+t^{1/2}\right]/N$
or
$\mathsf{C}(n)/N$
(
$\mathbb{L}_n$
-conditional bias), where t is the time horizon, N is the ensemble size, and
$\mathsf{C}(n)$
is a constant that depends only on n, not on N or t. Finally, we use these results for online static parameter estimation for the above filtering models and implement the methodology for both linear and nonlinear models.
This paper investigates the linear minimum mean-square error estimation for discrete-time Markovian jump linear systems with delayed measurements. The key technique applied for treating the measurement delay is reorganization innovation analysis, by which the state estimation with delayed measurements is transformed into a standard linear mean-square filter of an associated delay-free system. The optimal filter is derived based on the innovation analysis method together with geometric arguments in an appropriate Hilbert space. The solution is given in terms of two Riccati difference equations. Finally, a simulation example is presented to illustrate the efficiency of the proposed method.
Fast filtering algorithms arising from linear filtering and
estimation are nonlinear dynamical systems whose initial values
are the statistics of the observation process. In this paper, we
give a fairly complete description of the phase portrait for such
nonlinear dynamical systems, as well as a special type of naturally
related matrix Riccati equation.
Comparison theorems are developed for the pair of first order Riccati equations (1) and (2) . The comparisons are of an integral type and involve an auxiliary function μ. Applications are given to disconjugacy theory for self-adjoint equations of the second and fourth order.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.