We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we will focus on the statistical spectral dynamics which are paramount to understanding the development of the integrated mixing quantities described in Chapter 5. Reynolds flow averaging and the turbulent kinetic energy are introduced. In addition, I will discuss how the energy of the flows is transferred from large scale to small scale modes, as well as the impact of the shockwave and gravity on the isotropy of the flows. The flow spectra allow several important length scales to be defined. Numeric simulations and experimental data will be offered to provide insights on the mixing processes.
In many practical applications, one is interested only in the average or expected value of flow quantities, such as aerodynamic forces and heat transfer. Governing equations for these mean flow quantities may be derived by averaging the Navier-Stokes and temperature or scalar transport equations. Reynolds averaging introduces additional unknowns owing to the nonlinearity of the equations, which is known as the closure problem in the turbulence literature. Turbulence models for the unclosed terms in the averaged equations are a way to manage the closure problem, for they close the equations with phenomenological models that relate the unknown terms to the solution variables. It is important that these models do not alter the conservation and invariance properties of the original equations of motion. We take a closer look at the equations of motion to understand these fundamental qualities in more depth. We describe averaging operators for canonical turbulent flows at the core of basic turbulence research and modeling efforts, and discuss homogeneity and stationarity. We also examine the Galilean invariance of the equations of motion and the role of vorticity in turbulence dynamics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.