We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To assess the clustering properties of residential urban food environment indicators across neighbourhoods and to determine if clustering profiles are associated with diet outcomes among adults in Brooklyn, New York.
Design:
Cross-sectional.
Setting:
Five neighbourhoods in Brooklyn, New York.
Participants:
Survey data (n 1493) were collected among adults in Brooklyn, New York between April 2019 and September 2019. Data for food environment indicators (fast-food restaurants, bodegas, supermarkets, farmer’s markets, community kitchens, Supplemental Nutrition Assistance Program application centres, food pantries) were drawn from New York databases. Latent profile analysis (LPA) was used to identify individuals’ food access-related profiles, based on food environments measured by the availability of each outlet within each participant’s 800-m buffer. Profile memberships were associated with dietary outcomes using mixed linear regression.
Results:
LPA identified four residential urban food environment profiles (with significant high clusters ranging from 17 to 57 across profiles): limited/low food access, (n 587), bodega-dense (n 140), food swamp (n 254) and high food access (n 512) profiles. Diet outcomes were not statistically different across identified profiles. Only participants in the limited/low food access profile were more likely to consume sugar-sweetened beverages (SSB) than those in the bodega-dense profile (b = 0·44, P < 0·05) in adjusted models.
Conclusions:
Individuals in limited and low food access neighbourhoods are vulnerable to consuming significant amounts of SSB compared with those in bodega-dense communities. Further research is warranted to elucidate strategies to improve fruit and vegetable consumption while reducing SSB intake within residential urban food environments.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.