We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
From case reports, haloperidol administration has been associated with QTc prolongation, torsades de pointes, and sudden cardiac death. In a vulnerable population of critically ill patients after cardiac surgery, however, it is unclear whether haloperidol administration affects the QTc interval. Thus, the aim of this study is to explore the effect of haloperidol in low doses on this interval.
Method
This retrospective cohort study was performed on a cardio-surgical intensive care unit (ICU), screened 2,216 patients and eventually included 68 patients with delirium managed with oral and intravenous haloperidol. In this retrospective analysis, electrocardiograms were taken prior and within 24 h after haloperidol administration. The effect of haloperidol on QTc was determined with a Person correlation, and inter-group differences were measured with new long QT comparisons.
Results
In total, 68 patients were included, the median age was 71 (64–79) years and predominantly male (77%). Haloperidol administration followed ICU admission by three days and the cumulative dose was 4 (2–9) mg. As a result, haloperidol administration did not affect the QTc (r = 0.144, p = 0.23). In total, 31% (21/68 patients) had a long QT before and 27.9% (19/68 patients) after haloperidol administration. Only 12% (8/68 patients) developed a newly onset long QT. These patients were not different in the route of administration, cumulative haloperidol doses, comorbidities, laboratory findings, or medications.
Significance of results
These results indicated that low-dose intravenous haloperidol was safe and not clinically relevant for the development of a newly onset long QT syndrome or adverse outcomes and support recent findings inside and outside the ICU setting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.