We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct a collection of families of higher Chow cycles of type $(2,1)$ on a two-dimensional family of Kummer surfaces, and prove that for a very general member, they generate a subgroup of rank $\ge 18$ in the indecomposable part of the higher Chow group. Construction of the cycles uses a finite group action on the family, and the proof of their linear independence uses Picard–Fuchs differential operators.
In the 1970s, Dwork defined the logarithmic growth (log-growth for short) filtrations for $p$-adic differential equations $Dx=0$ on the $p$-adic open unit disc $|t|<1$, which measure the asymptotic behavior of solutions $x$ as $|t|\to 1^{-}$. Then, Dwork calculated the log-growth filtration for $p$-adic Gaussian hypergeometric differential equation. In the late 2000s, Chiarellotto and Tsuzuki proposed a fundamental conjecture on the log-growth filtrations for $(\varphi ,\nabla )$-modules over $K[\![t]\!]_0$, which can be regarded as a generalization of Dwork's calculation. In this paper, we prove a generalization of the conjecture to $(\varphi ,\nabla )$-modules over the bounded Robba ring. As an application, we prove a generalization of Dwork's conjecture proposed by Chiarellotto and Tsuzuki on the specialization property for log-growth Newton polygons.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.