We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Climate change caused by the increase in regional and global air temperature significantly affects the environment, especially in cold regions. The frozen ground degradation and its environmental consequence in the Tibetan region are reviewed. Model simulations show that air temperature in the Tibetan Plateau will continue to increase by 3.8–4.8°C at the end of this century. From 1981 to 2010, the duration of seasonally frozen ground was shortened, which delayed its start by 3.4 days and ended 9.4 days earlier than normal. The warming phenomenon resulted in degradation of frozen ground and permafrost by 3.3 105 km2 and 1.11 106 km2, respectively. From 2001 to 2015,soil erosion and desert area increased by 1.14 and 1.80 per cent, respectively. This resulted in a reduction of vegetation coverage. In addition, the influence of climate change on highway on the Qinghai–Tibetan Plateau was also caused by frozen ground degradation, soil deformation and thawed settlement. With a large portion of frozen ground degradation in the Qinghai–Tibetan Plateau, long-term field monitoring, remote sensing investigations, model predictions for temperature and frozen soil, and adaptations to environmental change are needed to mitigate the effects of more intense changes expected in the future.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.