We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Two main methods are used to solve continuous-time quasi birth-and-death processes: matrix geometric (MG) and probability generating functions (PGFs). MG requires a numerical solution (via successive substitutions) of a matrix quadratic equation A0 + RA1 + R2A2 = 0. PGFs involve a row vector $\vec{G}(z)$ of unknown generating functions satisfying $H(z)\vec{G}{(z)^\textrm{T}} = \vec{b}{(z)^\textrm{T}},$ where the row vector $\vec{b}(z)$ contains unknown “boundary” probabilities calculated as functions of roots of the matrix H(z). We show that: (a) H(z) and $\vec{b}(z)$ can be explicitly expressed in terms of the triple A0, A1, and A2; (b) when each matrix of the triple is lower (or upper) triangular, then (i) R can be explicitly expressed in terms of roots of $\det [H(z)]$; and (ii) the stability condition is readily extracted.
In the paper we first show how to convert a generalized Bonferroni-type inequality into an estimation for the generating function of the number of occurring events, then we give estimates for the deviation of two discrete probability distributions in terms of the maximum distance between their generating functions over the interval [0, 1].
We give necessary and sufficient conditions for in terms of , where Sn is the sum of n i.i.d. random variables with values in]0, ∞[, and A ≧ 0. We use these results to give a probabilistic proof of the ‘explosion criterion' for continuous-time Markov branching processes, which is usually shown analytically.
In the Taylor series expansion about s = 1 of the probability generating function f(s) of a non-negative integer-valued random variable with finite nth factorial moment the remainder term is proportional to another p.g.f. This leads to simple proofs of other power series expansions for p.g.f.'s, including an inversion formula giving the distribution in terms of the moments (when this can be done). Old and new inequalities for the extinction probability of a branching process are established.
The problem of approximating an arbitrary probability generating function (p.g.f.) by a polynomial is considered. It is shown that if the coefficients rj are chosen so that LN(·) agrees with g(·) to k derivatives at s = 1 and to (N – k) derivatives at s = 0, then LN is in fact an upper or lower bound to g; the nature of the bound depends only on k and not on N. Application of the results to the problems of finding bounds for extinction probabilities, extinction time distributions and moments of branching process distributions are examined.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.