Contemporary epidemiological models often involve spatial variation, providing an avenue to investigate the averaged dynamics of individual movements. In this work, we extend a recent model by Vaziry, Kolokolnikov, and Kevrekidis [Royal Society Open Science 9 (10), 2022] that included, in both infected and susceptible population dynamics equations, a cross-diffusion term with the second spatial derivative of the infected population density. Diffusion terms of this type occur, for example, in the Keller–Siegel chemotaxis model. The presented model corresponds to local orderly commute of susceptible and infected individuals and is shown to arise in two dimensions as a limit of a discrete process. The present contribution identifies and studies specific features of the new model’s dynamics, including various types of infection waves and buffer zones protected from the infection. The model with vital dynamics additionally exhibits complex spatio-temporal behaviour that involves the generation of quasiperiodic infection waves and emergence of transient strongly heterogeneous patterns.