We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
After having examined the deterministic motility of swimming cells, we now turn to their interactions with a fluctuating environment. We consider in this thirteenth chapter the motion of small microorganisms subject to thermal noise, a situation relevant to the locomotion of small bacteria. This allows us to introduce two modelling approaches, namely a discrete framework (along with ensemble averaging) and a continuum probabilistic framework, both of which we adapt for the modelling of collective dynamics in the next chapter. We first review Brownian motion in translation and rotation for a passive particle, introduce all the relevant timescales for its dynamics, show how the statistical properties of its trajectory can be captured with both discrete and continuum frameworks, and apply these concepts to the diffusion of cells. By adding a swimming velocity to the particle, we next show how thermal noise affects the motion of swimming microorganisms and in turn how the noisy run-and-tumble motion of bacteria can be described as an effective diffusive process.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.