We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Computer-based interactive items have become prevalent in recent educational assessments. In such items, detailed human–computer interactive process, known as response process, is recorded in a log file. The recorded response processes provide great opportunities to understand individuals’ problem solving processes. However, difficulties exist in analyzing these data as they are high-dimensional sequences in a nonstandard format. This paper aims at extracting useful information from response processes. In particular, we consider an exploratory analysis that extracts latent variables from process data through a multidimensional scaling framework. A dissimilarity measure is described to quantify the discrepancy between two response processes. The proposed method is applied to both simulated data and real process data from 14 PSTRE items in PIAAC 2012. A prediction procedure is used to examine the information contained in the extracted latent variables. We find that the extracted latent variables preserve a substantial amount of information in the process and have reasonable interpretability. We also empirically prove that process data contains more information than classic binary item responses in terms of out-of-sample prediction of many variables.
A multidimensional scaling analysis is presented for replicated layouts of pairwise choice responses. In most applications the replicates will represent individuals who respond to all pairs in some set of objects. The replicates and the objects are scaled in a joint space by means of an inner product model which assigns weights to each of the dimensions of the space. Least squares estimates of the replicates' and objects' coordinates, and of unscalability parameters, are obtained through a manipulation of the error sum of squares for fitting the model. The solution involves the reduction of a three-way least squares problem to two subproblems, one trivial and the other solvable by classical least squares matrix factorization. The analytic technique is illustrated with political preference data and is contrasted with multidimensional unfolding in the domain of preferential choice.
If d is a measure of dissimilarity on a finite set with n elements, the smallest positive constant c* such that d + c has an euclidean representation for all c ≥c* is shown to be the largest eigen-value of a matrix of size 2n.
In studies involving judgments of similarity or dissimilarity, a variety of other variables may also be measured. Examples might be direct ratings of the stimuli, pairwise preference judgments, and physical measurements of the stimuli with respect to various properties. In such cases, there are important advantages to joint analyses of the dissimilarity and collateral variables. A variety of models are described for relating these and algorithms described for fitting these to data. A number of hypothesis tests are developed and an example offered.
Through external analysis of two-mode data one attempts to map the elements of one mode (e.g., attributes) as vectors in a fixed space of the elements of the other mode (e.g., stimuli). This type of analysis is extended to three-mode data, for instance, when the ratings are made by more individuals. It is described how alternating least squares algorithms for three-mode principal component analysis (PCA) are adapted to enable external analysis, and it is demonstrated that these techniques are useful for exploring differences in the individuals' mappings of the attribute vectors in the fixed stimulus space. Conditions are described under which individual differences may be ignored. External three-mode PCA is illustrated with data from a person perception experiment, designed after two studies by Rosenberg and his associates whose results were used as external information.
By assuming a distribution for the subject weights in a diagonal metric (INDSCAL) multidimensional scaling model, the subject weights become random effects. Including random effects in multidimensional scaling models offers several advantages over traditional diagonal metric models such as those fitted by the INDSCAL, ALSCAL, and other multidimensional scaling programs. Unlike traditional models, the number of parameters does not increase with the number of subjects, and, because the distribution of the subject weights is modeled, the construction of linear models of the subject weights and the testing of those models is immediate. Here we define a random effects diagonal metric multidimensional scaling model, give computational algorithms, describe our experiences with these algorithms, and provide an example illustrating the use of the model and algorithms.
The kinds of individual differences in perceptions permitted by the weighted euclidean model for multidimensional scaling (e.g., INDSCAL) are much more restricted than those allowed by Tucker’s Three-mode Multidimensional Scaling (TMMDS) model or Carroll’s Idiosyncratic Scaling (IDIOSCAL) model. Although, in some situations the more general models would seem desirable, investigators have been reluctant to use them because they are subject to transformational indeterminacies which complicate interpretation. In this article, we show how these indeterminacies can be removed by constructing specific models of the phenomenon under investigation. As an example of this approach, a model of the size-weight illusion is developed and applied to data from two experiments, with highly meaningful results. The same data are also analyzed using INDSCAL. Of the two solutions, only the one obtained by using the size-weight model allows examination of individual differences in the strength of the illusion; INDSCAL can not represent such differences. In this sample, however, individual differences in illusion strength turn out to be minor. Hence the INDSCAL solution, while less informative than the size-weight solution, is nonetheless easily interpretable.
Some methods that analyze three-way arrays of data (including INDSCAL and CANDECOMP/PARAFAC) provide solutions that are not subject to arbitrary rotation. This property is studied in this paper by means of the “triple product” [A, B, C] of three matrices. The question is how well the triple product determines the three factors. The answer: up to permutation of columns and multiplication of columns by scalars—under certain conditions. In this paper we greatly expand the conditions under which the result is known to hold. A surprising fact is that the nonrotatability characteristic can hold even when the number of factors extracted is greater than every dimension of the three-way array, namely, the number of subjects, the number of tests, and the number of treatments.
Cross-classified data are frequently encountered in behavioral and social science research. The loglinear model and dual scaling (correspondence analysis) are two representative methods of analyzing such data. An alternative method, based on ideal point discriminant analysis (DA), is proposed for analysis of contingency tables, which in a certain sense encompasses the two existing methods. A variety of interesting structures can be imposed on rows and columns of the tables through manipulations of predictor variables and/or as direct constraints on model parameters. This, along with maximum likelihood estimation of the model parameters, allows interesting model comparisons. This is illustrated by the analysis of several data sets.
Multidimensional probabilistic models of behavior following similarity and choice judgements have proven to be useful in representing multidimensional percepts in Euclidean and non-Euclidean spaces. With few exceptions, these models are generally computationally intense because they often require numerical work with multiple integrals. This paper focuses attention on a particularly general triad and preferential choice model previously requiring the numerical evaluation of a 2n-fold integral, where n is the number of elements in the vectors representing the psychological magnitudes. Transforming this model to an indefinite quadratic form leads to a single integral. The significance of this form to multidimensional scaling and computational efficiency is discussed.
This paper presents a new stochastic multidimensional scaling procedure for the analysis of three-mode, three-way pick any/J data. The method provides either a vector or ideal-point model to represent the structure in such data, as well as “floating” model specifications (e.g., different vectors or ideal points for different choice settings), and various reparameterization options that allow the coordinates of ideal points, vectors, or stimuli to be functions of specified background variables. A maximum likelihood procedure is utilized to estimate a joint space of row and column objects, as well as a set of weights depicting the third mode of the data. An algorithm using a conjugate gradient method with automatic restarts is developed to estimate the parameters of the models. A series of Monte Carlo analyses are carried out to investigate the performance of the algorithm under diverse data and model specification conditions, examine the statistical properties of the associated test statistic, and test the robustness of the procedure to departures from the independence assumptions. Finally, a consumer psychology application assessing the impact of situational influences on consumers' choice behavior is discussed.
Bootstrap and jackknife techniques are used to estimate ellipsoidal confidence regions of group stimulus points derived from INDSCAL. The validity of these estimates is assessed through Monte Carlo analysis. Asymptotic estimates of confidence regions based on a MULTISCALE solution are also evaluated. Our findings suggest that the bootstrap and jackknife techniques may be used to provide statements regarding the accuracy of the relative locations of points in space. Our findings also suggest that MULTISCALE asymptotic estimates of confidence regions based on small samples provide an optimistic view of the actual statistical reliability of the solution.
A general question is raised concerning the possible consequences of employing the very popular INDSCAL multidimensional scaling model in cases where the assumptions of that model may be violated. Simulated data are generated which violate the INDSCAL assumption that all individuals perceive the dimensions of the common object space to be orthogonal. INDSCAL solutions for these various sets of data are found to exhibit extremely high goodness of fit, but systematically distorted object spaces and negative subject weights. The author advises use of Tucker’s three-mode model for multidimensional scaling, which can account for non-orthogonal perceptions of the object space dimensions. It is shown that the INDSCAL model is a special case of the three-mode model.
A reparameterization of a latent class model is presented to simultaneously classify and scale nominal and ordered categorical choice data. Latent class-specific probabilities are constrained to be equal to the preference probabilities from a probabilistic ideal-point or vector model that yields a graphical, multidimensional representation of the classification results. In addition, background variables can be incorporated as an aid to interpreting the latent class-specific response probabilities. The analyses of synthetic and real data sets illustrate the proposed method.
The vast majority of existing multidimensional scaling (MDS) procedures devised for the analysis of paired comparison preference/choice judgments are typically based on either scalar product (i.e., vector) or unfolding (i.e., ideal-point) models. Such methods tend to ignore many of the essential components of microeconomic theory including convex indifference curves, constrained utility maximization, demand functions, et cetera. This paper presents a new stochastic MDS procedure called MICROSCALE that attempts to operationalize many of these traditional microeconomic concepts. First, we briefly review several existing MDS models that operate on paired comparisons data, noting the particular nature of the utility functions implied by each class of models. These utility assumptions are then directly contrasted to those of microeconomic theory. The new maximum likelihood based procedure, MICROSCALE, is presented, as well as the technical details of the estimation procedure. The results of a Monte Carlo analysis investigating the performance of the algorithm as a number of model, data, and error factors are experimentally manipulated are provided. Finally, an illustration in consumer psychology concerning a convenience sample of thirty consumers providing paired comparisons judgments for some fourteen brands of over-the-counter analgesics is discussed.
This paper focuses on the problem of local minima of the STRESS function. It turns out that unidimensional scaling is particularly prone to local minima, whereas full dimensional scaling with Euclidean distances has a local minimum that is global. For intermediate dimensionality with Euclidean distances it depends on the dissimilarities how severe the local minimum problem is. For city-block distances in any dimensionality many different local minima are found. A simulation experiment is presented that indicates under what conditions local minima can be expected. We introduce the tunneling method for global minimization, and adjust it for multidimensional scaling with general Minkowski distances. The tunneling method alternates a local search step, in which a local minimum is sought, with a tunneling step in which a different configuration is sought with the same STRESS as the previous local minimum. In this manner successively better local minima are obtained, and experimentation so far shows that the last one is often a global minimum.
The recent history of multidimensional data analysis suggests two distinct traditions that have developed along quite different lines. In multidimensional scaling (MDS), the available data typically describe the relationships among a set of objects in terms of similarity/dissimilarity (or (pseudo-)distances). In multivariate analysis (MVA), data usually result from observation on a collection of variables over a common set of objects. This paper starts from a very general multidimensional scaling task, defined on distances between objects derived from one or more sets of multivariate data. Particular special cases of the general problem, following familiar notions from MVA, will be discussed that encompass a variety of analysis techniques, including the possible use of optimal variable transformation. Throughout, it will be noted how certain data analysis approaches are equivalent to familiar MVA solutions when particular problem specifications are combined with particular distance approximations.
A quadratic programming algorithm is presented for fitting Carroll’s weighted unfolding model for preferences to known multidimensional scale values. The algorithm can be applied directly to pairwise preferences; it permits nonnegativity constraints on subject weights; and it provides a means of testing various preference model hypotheses. While basically metric, it can be combined with Kruskal’s monotone regression to fit ordinal data. Monte Carlo results show that (a) adequacy of “true” preference recovery depends on the number of data points and the amount of error, and (b) the proportion of data variance accounted for by the model sometimes only approximately reflects “true” recovery.
In this paper, hierarchical and non-hierarchical tree structures are proposed as models of similarity data. Trees are viewed as intermediate between multidimensional scaling and simple clustering. Procedures are discussed for fitting both types of trees to data. The concept of multiple tree structures shows great promise for analyzing more complex data. Hybrid models in which multiple trees and other discrete structures are combined with continuous dimensions are discussed. Examples of the use of multiple tree structures and hybrid models are given. Extensions to the analysis of individual differences are suggested.
The study deals with the problem of determining true dimensionality of data-with-error scaled by Kruskal's multidimensional scaling technique. Artificial data was constructed for 6, 8, 12, 16, and 30 point configurations of 1, 2, or 3 true dimensions by adding varying amounts of error to the true distances. Results show how stress is affected by error, number of points, and number of dimensions, and indicate that stress and the “elbow” criterion are inadequate for purposes of identifying true dimensionality when there is error in the data. The Wagenaar-Padmos procedure for identifying true dimensionality and error level is discussed. A simplified technique, involving a measure called Constraint, is suggested.