To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To assess the relationship between dietary intake of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein+zeaxanthin (LZ) and occurrence of metabolic dysfunction-associated fatty liver disease (MAFLD).
Design:
Cross-sectional study design. The MAFLD diagnosis was based on hepatic steatosis and metabolic dysregulation. Carotenoid intake was adjusted for using an energy-adjusted model. Logistic regression and restricted cubic spline (RCS) analyses were used to assess the relationships, with sensitivity analysis to validate the findings. Weighted quantile sum regression (WQS) was used to explore the combined effect of these carotenoids on MAFLD. Subgroup analyses were conducted to identify population-specific associations.
Setting:
National Health and Nutrition Examination Survey (NHANES) 2017–March 2020.
Participants:
This study included 5098 individuals aged 18 years and older.
Results:
After adjusting for potential confounders, a weak inverse association was observed between α-carotene and β-carotene intakes and MAFLD occurrence (all P value <0·05). The highest quartile of β-carotene intake showed a significantly lower occurrence of MAFLD compared with the lowest quartile (OR = 0·65; 95 % CI: 0·44, 0·97). RCS analysis showed that a significantly lower occurrence of MAFLD was associated with a higher intake of the four carotenoids, excluding lycopene. Furthermore, the WQS analysis revealed a negative relationship between combined carotenoid intake and MAFLD occurrence (OR = 0·95, 95 % CI: 0·90, 1·00, P = 0·037). Subgroup analyses showed dietary carotenoid intake was associated with reduced MAFLD occurrence in populations aged 50–69 years, females, physically active individuals and non-drinkers.
Conclusion:
Higher dietary intake of carotenoids is associated with lower MAFLD occurrence. However, this relationship varies among individuals of different ages, sexes and lifestyles.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.