We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a class of load-balancing algorithms for many-server systems (N servers). Each server has a buffer of size $b-1$ with $b=O(\sqrt{\log N})$, i.e. a server can have at most one job in service and $b-1$ jobs queued. We focus on the steady-state performance of load-balancing algorithms in the heavy traffic regime such that the load of the system is $\lambda = 1 - \gamma N^{-\alpha}$ for $0<\alpha<0.5$ and $\gamma > 0,$ which we call the sub-Halfin–Whitt regime ($\alpha=0.5$ is the so-called Halfin–Whitt regime). We establish a sufficient condition under which the probability that an incoming job is routed to an idle server is 1 asymptotically (as $N \to \infty$) at steady state. The class of load-balancing algorithms that satisfy the condition includes join-the-shortest-queue, idle-one-first, join-the-idle-queue, and power-of-d-choices with $d\geq \frac{r}{\gamma}N^\alpha\log N$ (r a positive integer). The proof of the main result is based on the framework of Stein’s method. A key contribution is to use a simple generator approximation based on state space collapse.
In many-server systems it is crucial to staff the right number of servers so that targeted service levels are met. These staffing problems typically lead to constraint satisfaction problems that are difficult to solve. During the last decade, a powerful many-server asymptotic theory has been developed to solve such problems and optimal staffing rules are known to obey the square-root staffing principle. In this paper we develop many-server asymptotics in the so-called quality and efficiency driven regime, and present refinements to many-server asymptotics and square-root staffing for a Markovian queueing model with admission control and retrials.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.