We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A method for robust canonical discriminant analysis via two robust objective loss functions is discussed. These functions are useful to reduce the influence of outliers in the data. Majorization is used at several stages of the minimization procedure to obtain a monotonically convergent algorithm. An advantage of the proposed method is that it allows for optimal scaling of the variables. In a simulation study it is shown that under the presence of outliers the robust functions outperform the ordinary least squares function, both when the underlying structure is linear in the variables as when it is nonlinear. Furthermore, the method is illustrated with empirical data.
A general approach for fitting a model to a data matrix by weighted least squares (WLS) is studied. This approach consists of iteratively performing (steps of) existing algorithms for ordinary least squares (OLS) fitting of the same model. The approach is based on minimizing a function that majorizes the WLS loss function. The generality of the approach implies that, for every model for which an OLS fitting algorithm is available, the present approach yields a WLS fitting algorithm. In the special case where the WLS weight matrix is binary, the approach reduces to missing data imputation.
An algorithm is described for fitting the DEDICOM model for the analysis of asymmetric data matrices. This algorithm generalizes an algorithm suggested by Takane in that it uses a damping parameter in the iterative process. Takane's algorithm does not always converge monotonically. Based on the generalized algorithm, a modification of Takane's algorithm is suggested such that this modified algorithm converges monotonically. It is suggested to choose as starting configurations for the algorithm those configurations that yield closed-form solutions in some special cases. Finally, a sufficient condition is described for monotonic convergence of Takane's original algorithm.
The recent history of multidimensional data analysis suggests two distinct traditions that have developed along quite different lines. In multidimensional scaling (MDS), the available data typically describe the relationships among a set of objects in terms of similarity/dissimilarity (or (pseudo-)distances). In multivariate analysis (MVA), data usually result from observation on a collection of variables over a common set of objects. This paper starts from a very general multidimensional scaling task, defined on distances between objects derived from one or more sets of multivariate data. Particular special cases of the general problem, following familiar notions from MVA, will be discussed that encompass a variety of analysis techniques, including the possible use of optimal variable transformation. Throughout, it will be noted how certain data analysis approaches are equivalent to familiar MVA solutions when particular problem specifications are combined with particular distance approximations.
A procedure is described for minimizing a class of matrix trace functions. The procedure is a refinement of an earlier procedure for minimizing the class of matrix trace functions using majorization. It contains a recently proposed algorithm by Koschat and Swayne for weighted Procrustes rotation as a special case. A number of trial analyses demonstrate that the refined majorization procedure is more efficient than the earlier majorization-based procedure.
The problem of minimizing a general matrix, trace function, possibly subject to certain constraints, is approached by means of majorizing this function by one having a simple quadratic shape and whose minimum is easily found. It is shown that the parameter set that minimizes the majorizing function also decreases the matrix trace function, which in turn provides a monotonically convergent algorithm for minimizing the matrix trace function iteratively. Three algorithms based on majorization for solving certain least squares problems are shown to be special cases. In addition, by means of several examples, it is noted how algorithms may be provided for a wide class of statistical optimization tasks for which no satisfactory algorithms seem available.
Brokken has proposed a method for orthogonal rotation of one matrix such that its columns have a maximal sum of congruences with the columns of a target matrix. This method employs an algorithm for which convergence from every starting point is not guaranteed. In the present paper, an iterative majorization algorithm is proposed which is guaranteed to converge from every starting point. Specifically, it is proven that the function value converges monotonically, and that the difference between subsequent iterates converges to zero. In addition to the better convergence properties, another advantage of the present algorithm over Brokken's one is that it is easier to program. The algorithms are compared on 80 simulated data sets, and it turned out that the new algorithm performed well in all cases, whereas Brokken's algorithm failed in almost half the cases. The derivation of the algorithm is given in full detail because it involves a series of inequalities that can be of use to derive similar algorithms in different contexts.
Takane, Young, and de Leeuw proposed a procedure called FACTALS for the analysis of variables of mixed measurement levels (numerical, ordinal, or nominal). Mooijaart pointed out that their algorithm does not necessarily converge, and Nevels proposed a new algorithm for the case of nominal variables. In the present paper it is shown that Nevels' procedure is incorrect, and a new procedure for handling nominal variables is proposed. In addition, a procedure for handling ordinal variables is proposed. Using these results, a monotonically convergent algorithm is constructed for FACTALS of any mixture of variables.
In the literature on active redundancy allocation, the redundancy lifetimes are usually postulated to be independent of the component lifetimes for the sake of technical convenience. However, this unrealistic assumption leads to a risk of inaccurately evaluating system reliability, because it overlooks the statistical dependence of lifetimes due to common stresses. In this study, for k-out-of-n:F systems with component and redundancy lifetimes linked by the Archimedean copula, we show that (i) allocating more homogeneous redundancies to the less reliable components tends to produce a redundant system with stochastically larger lifetime, (ii) the reliability of the redundant system can be uniformly maximized through balancing the allocation of homogeneous redundancies in the context of homogeneous components, and (iii) allocating a more reliable matched redundancy to a less reliable component produces a more reliable system. These novel results on k-out-of-n:F systems in which component and redundancy lifetimes are statistically dependent are more applicable to the complicated engineering systems that arise in real practice. Some numerical examples are also presented to illustrate these findings.
Layer reinsurance treaty is a common form obtained in the problem of optimal reinsurance design. In this paper, we study allocations of policy limits in layer reinsurance treaties with dependent risks. We investigate the effects of orderings and heterogeneity among policy limits on the expected utility functions of the terminal wealth from the viewpoint of risk-averse insurers faced with right tail weakly stochastic arrangement increasing losses. Orderings on optimal allocations are presented for normal layer reinsurance contracts under certain conditions. Parallel studies are also conducted for randomized layer reinsurance contracts. As a special case, the worst allocations of policy limits are also identified when the exact dependence structure among the losses is unknown. Numerical examples are presented to shed light on the theoretical findings.
from
Part Three
-
Sharp Constants in Lieb–Thirring Inequalities
Rupert L. Frank, Ludwig-Maximilians-Universität München,Ari Laptev, Imperial College of Science, Technology and Medicine, London,Timo Weidl, Universität Stuttgart
In this chapter, we derive the currently best known bounds on the constants in the Lieb–Thirring inequality following Hundertman–Laptev–Weidl and Frank–Hundertmark–Jex–Nam. These arguments proceed by proving bounds for one-dimensional Schrödinger operators with matrix-valued potentials and then using the method of "lifting in dimension." In the final section, we summarize the results in the book and provide an overview of what is known about the sharp constants in the Lieb–Thirring and Cwikel–Lieb–Rozenblum inequalities.
In the usual shock models, the shocks arrive from a single source. Bozbulut and Eryilmaz [(2020). Generalized extreme shock models and their applications. Communications in Statistics – Simulation and Computation49(1): 110–120] introduced two types of extreme shock models when the shocks arrive from one of $m\geq 1$ possible sources. In Model 1, the shocks arrive from different sources over time. In Model 2, initially, the shocks randomly come from one of $m$ sources, and shocks continue to arrive from the same source. In this paper, we prove that the lifetime of Model 1 is less than Model 2 in the usual stochastic ordering. We further show that if the inter-arrival times of shocks have increasing failure rate distributions, then the usual stochastic ordering can be generalized to the hazard rate ordering. We study the stochastic behavior of the lifetime of Model 2 with respect to the severity of shocks using the notion of majorization. We apply the new stochastic ordering results to show that the age replacement policy under Model 1 is more costly than Model 2.
In this paper we define a family of preferential attachment models for random graphs with fitness in the following way: independently for each node, at each time step a random fitness is drawn according to the position of a moving average process with positive increments. We will define two regimes in which our graph reproduces some features of two well-known preferential attachment models: the Bianconi–Barabási and Barabási–Albert models. We will discuss a few conjectures on these models, including the convergence of the degree sequence and the appearance of Bose–Einstein condensation in the network when the drift of the fitness process has order comparable to the graph size.
This paper investigates the ordering properties of largest claim amounts in heterogeneous insurance portfolios in the sense of some transform orders, including the convex transform order and the star order. It is shown that the largest claim amount from a set of independent and heterogeneous exponential claims is more skewed than that from a set of independent and homogeneous exponential claims in the sense of the convex transform order. As a result, a lower bound for the coefficient of variation of the largest claim amount is established without any restrictions on the parameters of the distributions of claim severities. Furthermore, sufficient conditions are presented to compare the skewness of the largest claim amounts from two sets of independent multiple-outlier scaled claims according to the star order. Some comparison results are also developed for the multiple-outlier proportional hazard rates claims. Numerical examples are presented to illustrate these theoretical results.
Most of the real-life populations are heterogeneous and homogeneity is often just a simplifying assumption for the relevant statistical analysis. Mixtures of lifetime distributions that correspond to homogeneous subpopulations were intensively studied in the literature. Various distributional and stochastic properties of finite and continuous mixtures were discussed. In this paper, following recent publications, we develop further a mixture concept in the form of the generalized α-mixtures that include all mixture models that are widely explored in the literature. We study some main stochastic properties of the suggested mixture model, that is, aging and appropriate stochastic comparisons. Some relevant examples and counterexamples are given to illustrate our findings.
Associated with every
$2n\times 2n$
real positive definite matrix
$A,$
there exist n positive numbers called the symplectic eigenvalues of
$A,$
and a basis of
$\mathbb {R}^{2n}$
called the symplectic eigenbasis of A corresponding to these numbers. In this paper, we discuss differentiability and analyticity of the symplectic eigenvalues and corresponding symplectic eigenbasis and compute their derivatives. We then derive an analogue of Lidskii’s theorem for symplectic eigenvalues as an application.
In this paper, we discuss stochastic orderings of lifetimes of two heterogeneous parallel and series systems with heterogeneous dependent components having generalized Birnbaum–Saunders distributions. The comparisons presented here are based on the vector majorization of parameters. The ordering results are established in some special cases for the generalized Birnbaum–Saunders distribution based on the multivariate elliptical, normal, t, logistic, and skew-normal kernels. Further, we use these results by considering Archimedean copulas to model the dependence structure among systems with generalized Birnbaum–Saunders components. These results have been used to derive some upper and lower bounds for survival functions of lifetimes of parallel and series systems.
This paper deals with stochastic comparisons of the largest order statistics arising from two sets of independent and heterogeneous gamma samples. It is shown that the weak supermajorization order between the vectors of scale parameters together with the weak submajorization order between the vectors of shape parameters imply the reversed hazard rate ordering between the corresponding maximum order statistics. We also establish sufficient conditions of the usual stochastic ordering in terms of the p-larger order between the vectors of scale parameters and the weak submajorization order between the vectors of shape parameters. Numerical examples and applications in auction theory and reliability engineering are provided to illustrate these results.
We show that the kth order statistic from a heterogeneous sample of n ≥ k exponential random variables is larger than that from a homogeneous exponential sample in the sense of star ordering, as conjectured by Xu and Balakrishnan [14]. As a consequence, we establish hazard rate ordering for order statistics between heterogeneous and homogeneous exponential samples, resolving an open problem of Pǎltǎnea [11]. Extensions to general spacings are also presented.
In this paper, we consider exponentiated location-scale model and obtain several ordering results between extreme order statistics in various senses. Under majorization type partial order-based conditions, the comparisons are established according to the usual stochastic order, hazard rate order and reversed hazard rate order. Multiple-outlier models are considered. When the number of components are equal, the results are obtained based on the ageing faster order in terms of the hazard rate and likelihood ratio orders. For unequal number of components, we develop comparisons according to the usual stochastic order, hazard rate order, and likelihood ratio order. Numerical examples are considered to illustrate the results.