We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To assess changes in the Fe and vitamin A status of the population of Nangweshi refugee camp associated with the introduction of maize meal fortification.
Design
Pre- and post-intervention study using a longitudinal cohort.
Setting
Nangweshi refugee camp, Zambia.
Subjects
Two hundred and twelve adolescents (10–19 years), 157 children (6–59 months) and 118 women (20–49 years) were selected at random by household survey in July 2003 and followed up after 12 months.
Results
Maize grain was milled and fortified in two custom-designed mills installed at a central location in the camp and a daily ration of 400 g per person was distributed twice monthly to households as part of the routine food aid ration. During the intervention period mean Hb increased in children (0·87 g/dl; P < 0·001) and adolescents (0·24 g/dl; P = 0·043) but did not increase in women. Anaemia decreased in children by 23·4 % (P < 0·001) but there was no significant change in adolescents or women. Serum transferrin receptor (log10-transformed) decreased by −0·082 μg/ml (P = 0·036) indicating an improvement in the Fe status of adolescents but there was no significant decrease in the prevalence of deficiency (−8·5 %; P = 0·079). In adolescents, serum retinol increased by 0·16 μmol/l (P < 0·001) and vitamin A deficiency decreased by 26·1 % (P < 0·001).
Conclusions
The introduction of fortified maize meal led to a decrease in anaemia in children and a decrease in vitamin A deficiency in adolescents. Centralised, camp-level milling and fortification of maize meal is a feasible and pertinent intervention in food aid operations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.