We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accurate anti-aquaporin-4 (AQP4) and anti-myelin oligodendrocyte glycoprotein (MOG) autoantibody assays are needed to effectively diagnose neuromyelitis optica spectrum disorder and MOG antibody-associated disease. A proportion of patients at our centre have been tested for anti-AQP4 and anti-MOG autoantibodies locally, followed by an outsourced test as part of real-world practice. Outsourced testing is costly and of unproven utility. We conducted a quality improvement project to determine the value of outsourced testing for anti-AQP4 and anti-MOG autoantibodies.
Methods:
All patients seen by Calgary neurological services who underwent cell-based testing for anti-AQP4 and/or anti-MOG autoantibodies at both MitogenDx (Calgary, AB) and Mayo Clinic Laboratories (Rochester, MN, USA) between 2016 and 2020 were identified from a provincial database. The interlaboratory concordance was calculated by pairing within-subject results collected no more than 365 days apart. Retrospective chart review was done for subjects with discordant results to determine features associated with discordance and use of outsourced testing.
Results:
Fifty-seven anti-AQP4 and 46 anti-MOG test pairs from January 2016 to July 2020 were analyzed. Concordant tests pairs comprised 54/57 (94.7%, 95%CI 88.9–100.0%) anti-AQP4 and 41/46 (89.1%, 95%CI 80.1–98.1%) anti-MOG results. Discordant anti-AQP4 pairs included two local weak positives (negative when outsourced) and one local negative (positive when outsourced). Discordant anti-MOG pairs were all due to local weak positives (negative when outsourced).
Conclusion:
Interlaboratory discordant results for cell-based testing of anti-AQP4 autoantibodies were rare. Local anti-MOG weak positive results were associated with discordance, highlighting the need for cautious interpretation based on the clinical context. Our findings may reduce redundant outsourced testing.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.