We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Answering a question by Chatterji–Druţu–Haglund, we prove that, for every locally compact group $G$, there exists a critical constant $p_G \in [0,\infty ]$ such that $G$ admits a continuous affine isometric action on an $L_p$ space ($0< p<\infty$) with unbounded orbits if and only if $p \geq p_G$. A similar result holds for the existence of proper continuous affine isometric actions on $L_p$ spaces. Using a representation of cohomology by harmonic cocycles, we also show that such unbounded orbits cannot occur when the linear part comes from a measure-preserving action, or more generally a state-preserving action on a von Neumann algebra and $p>2$. We also prove the stability of this critical constant $p_G$ under $L_p$ measure equivalence, answering a question of Fisher.
The notions of chaos and frequent hypercyclicity enjoy an intimate relationship in linear dynamics. Indeed, after a series of partial results, it was shown by Bayart and Ruzsa in 2015 that for backward weighted shifts on $\ell _p(\mathbb {Z})$, the notions of chaos and frequent hypercyclicity coincide. It is with some effort that one shows that these two notions are distinct. Bayart and Grivaux in 2007 constructed a non-chaotic frequently hypercyclic weighted shift on $c_0$. It was only in 2017 that Menet settled negatively whether every chaotic operator is frequently hypercylic. In this article, we show that for a large class of composition operators on $L^{p}$-spaces, the notions of chaos and frequent hypercyclicity coincide. Moreover, in this particular class, an invertible operator is frequently hypercyclic if and only if its inverse is frequently hypercyclic. This is in contrast to a very recent result of Menet where an invertible operator frequently hypercyclic on $\ell _1$ whose inverse is not frequently hypercyclic is constructed.
In thisfinal applications chapter, we consider a range of problems in functional and harmonic analysis. In Section 16.1 we begin with a well-established connection between the Assouad and lower dimensions and Hardy inequalities. In Section 16.2 we explore a problem involving maximal operators averaged over spheres, where the Assouad dimension plays a role in determining whether certain Lp-improving estimates are satisfied.
For a locally compact group G and an arbitrary subset J of [1,∞], we introduce ILJ(G) as a subspace of ⋂ p∈JLp(G) with some norm to make it a Banach space. Then, for some special choice of J, we investigate some topological and algebraic properties of ILJ(G) as a Banach algebra under a convolution product.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.