Let $a_{1},a_{2},\ldots ,a_{m}$ and $b_{1},b_{2},\ldots ,b_{l}$ be two sequences of pairwise distinct positive integers greater than $1$. Assume also that none of the above numbers is a perfect power. If for each positive integer $n$ and prime number $p$ the number $\prod _{i=1}^{m}(1-a_{i}^{n})$ is divisible by $p$ if and only if the number $\prod _{j=1}^{l}(1-b_{j}^{n})$ is divisible by $p$, then $m=l$ and $\{a_{1},a_{2},\ldots ,a_{m}\}=\{b_{1},b_{2},\ldots ,b_{l}\}$.