We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Early reperfusion has the best likelihood for a favorable outcome in acute ischemic stroke (AIS) with large vessel occlusion (LVO). Our experience with mobile stroke unit (MSU) for direct to angiosuite (DTAS) transfer in AIS patients with suspected LVO is presented.
Methods:
Retrospective review of prospectively collected data from November 2019 to August 2022, of patients evaluated and transferred by the University of Alberta Hospital MSU and moved to angiosuite for endovascular thrombectomy (EVT).
Result:
A total of 41 cases were included. Nine were chosen for DTAS and 32 were shifted to angiosuite after stopping for computed tomography (CT) angiography of the head and neck (no-DTAS). Stroke severity measured by NIHSS (median with interquartile range (IQR)) was higher in patients of DTAS, 22 (14–24) vs 14.5 (5–25) in no-DTAS (p = 0.001). The non-contrast CT head in MSU showed hyperdense vessels in 8 (88.88%) DTAS vs 11 (34.35%) no-DTAS patients (p = 0.003). The EVT timelines (median with IQR, 90th percentile) including “door to artery puncture time” were 31 (23–50, 49.2) vs 79 (39–264, 112.8) minutes, and “door to recanalization time” was 69 (49–110, 93.2) vs 105.5 (52–178, 159.5) minutes in DTAS vs no-DTAS group, respectively. The workflow times were significantly shorter in the DTAS group (p < 0.001). Eight (88.88%) out of 9 DTAS patients had LVO and underwent thrombectomy.
Conclusions:
MSU for DTAS in patients with high NIHSS scores, cortical signs, and CT showing hyperdense vessel is an effective strategy to reduce the EVT workflow time.
A primary admission of patients with suspected acute ischemic stroke and large vessel occlusion (LVO) to centers capable of providing endovascular stroke therapy (EVT) may induce shorter time to treatment and better functional outcomes. One of the limitations in this strategy is the need for accurately identifying LVO patients in the prehospital setting. We aimed to study the feasibility and diagnostic performance of point-of-care ultrasound (POCUS) for the detection of LVO in patients with acute stroke.
Methods:
We conducted a proof-of-concept study and selected 15 acute ischemic stroke patients with angiographically confirmed LVO and 15 patients without LVO. Duplex ultrasonography (DUS) of the common carotid arteries was performed, and flow profiles compatible with LVO were scored independently by one experienced and one junior neurologist.
Results:
Among the 15 patients with LVO, 6 patients presented with an occlusion of the carotid-T and 9 patients presented with an M1 occlusion. Interobserver agreement between the junior and the experienced neurologist was excellent (kappa = 0.813, p < 0.001). Flow profiles of the CAA allowed the detection of LVO with a sensitivity of 73%, a positive predictive value of 92 and 100%, and a c-statistics of 0.83 (95%CI = 0.65–0.94) and 0.87 (95%CI = 0.69–0.94) (experienced neurologist and junior neurologist, respectively). In comparison with clinical stroke scales, DUS was associated with better trade-off between sensitivity and specificity.
Conclusion:
POCUS in acute stroke setting is feasible, it may serve as a complementary tool for the detection of LVO and is potentially applicable in the prehospital phase.
There is definitive evidence for effectiveness of thrombectomy for acute stroke with large vessel occlusion (LVO). A clinical tool to identify patients with LVO is therefore required for effective triage and prehospital decision making. We developed the FAST VAN tool, which follows from the Heart and Stroke Foundation FAST stroke screen, with the addition of cortical features of vision, aphasia, and neglect, to differentiate from lacunar syndromes.
Methods:
Consecutive acute stroke alerts initiated by emergency medical services (EMS) were prospectively analyzed from April 2017 to Jan 2021. FAST VAN signs were recorded by first responders who had received online education about the tool. These findings were compared to the presence or absence of LVO on CT angiography. Analysis was also performed by appropriateness for comprehensive stroke centers (CSC) transfer if no LVO was present. EMS providers were surveyed regarding ease of use in terms of learning the tool and using in real-world practice.
Results:
Data from 1080 consecutive acute strokes included 440 patients considered to have VAN signs by EMS. Fifty-four percent of VAN-positive patients showed LVO on CTA. Sensitivity, specificity, and accuracy were 86%, 75%, and 77%, respectively. In 204 false-positive cases, 143 (70%) were considered appropriate for evaluation at the CSC. EMS providers reported high satisfaction with learning and using the tool.
Discussion:
The FAST VAN tool for identification of LVO meets desired characteristics of an effective screening tool in ease of use, efficiency, and accuracy. Aphasia remains the most challenging cortical feature to identify accurately.
Although the efficacy of endovascular thrombectomy (EVT) for acute ischemic stroke caused by intracranial anterior circulation large vessel occlusion (LVO) is proven, demonstration of local effectiveness is critical for health system planning and resource allocation because of the complexity and cost of this treatment.
Methods:
Using our prospective registry, we identified all patients who underwent EVT for out-of-hospital LVO stroke from February 1, 2013 through January 31, 2017 (n = 44), and matched them 1:1 in a hierarchical fashion with control patients not treated with EVT based on age (±5 years), prehospital functional status, stroke syndrome, severity, and thrombolysis administration. Demographics, in-hospital mortality, discharge disposition from acute care, length of hospitalization, and functional status at discharge from acute care and at follow-up were compared between cases and controls.
Results:
For EVT-treated patients (median age 66, 50% women), the median onset-to-recanalization interval was 247 min, and successful recanalization was achieved in 30/44 (91%). Alteplase was administered in 75% of cases and 57% of controls (p = 0.07). In-hospital mortality was 11% among the cases and 36% in the control group (p = 0.006); this survival benefit persisted during follow-up (p = 0.014). More EVT patients were discharged home from acute care (50% vs. 18%, p = 0.002). Among survivors, there were nonsignificant trends in favor of EVT for median length of hospitalization (14 vs. 41 days, p = 0.11) and functional independence at follow-up (51% vs. 32%, p = 0.079).
Conclusion:
EVT improved survival and decreased disability. This demonstration of single-center effectiveness may help facilitate expansion of EVT services in similar health-care jurisdictions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.