We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the last exit time that a spectrally negative Lévy process is below zero until it reaches a positive level b, denoted by $g_{\tau_b^+}$. We generalize the results of the infinite-horizon last exit time explored by Chiu and Yin (2005) by incorporating a random horizon $\tau_b^+$, which represents the first passage time above b. We derive an explicit expression for the joint Laplace transform of $g_{\tau_b^+}$ and $\tau_b^+$ by utilizing a hybrid observation scheme approach proposed by Li, Willmot, and Wong (2018). We further study the optimal prediction of $g_{\tau_b^+}$ in the $L_1$ sense, and find that the optimal stopping time is the first passage time above a level $y_b^{\ast}$, with an explicit characterization of the stopping boundary $y_b^{\ast}$. As examples, Brownian motion with drift and the Cramér–Lundberg model with exponential jumps are considered.
For a Brownian bridge from 0 to y, we prove that the mean of the first exit time from the interval
$\left( -h,h \right),h>0$
, behaves as
${\mathrm{O}}(h^2)$
when
$h
\downarrow 0$
. Similar behaviour is also seen to hold for the three-dimensional Bessel bridge. For the Brownian bridge and three-dimensional Bessel bridge, this mean of the first exit time has a puzzling representation in terms of the Kolmogorov distribution. The result regarding the Brownian bridge is applied to provide a detailed proof of an estimate needed by Walsh to determine the convergence of the binomial tree scheme for European options.
Given a one-dimensional downwards transient diffusion process $X$, we consider a random time $\unicode[STIX]{x1D70C}$, the last exit time when $X$ exits a certain level $\ell$, and detect the optimal stopping time for it. In particular, for this random time $\unicode[STIX]{x1D70C}$, we solve the optimisation problem $\inf _{\unicode[STIX]{x1D70F}}\mathbb{E}[\unicode[STIX]{x1D706}(\unicode[STIX]{x1D70F}-\unicode[STIX]{x1D70C})_{+}+(1-\unicode[STIX]{x1D706})(\unicode[STIX]{x1D70C}-\unicode[STIX]{x1D70F})_{+}]$ over all stopping times $\unicode[STIX]{x1D70F}$. We show that the process should stop optimally when it runs below some fixed level $\unicode[STIX]{x1D705}_{\ell }$ for the first time, where $\unicode[STIX]{x1D705}_{\ell }$ is the unique solution in the interval $(0,\unicode[STIX]{x1D706}\ell )$ of an explicitly defined equation.
Using a new approach, for spectrally negative Lévy processes we find joint Laplace transforms involving the last exit time (from a semiinfinite interval), the value of the process at the last exit time, and the associated occupation time, which generalize some previous results.
We explore a dynamic approach to the problems of call admission and resource allocation for communication networks with connections that are differentiated by their quality of service requirements. In a dynamic approach, the amount of spare resources is estimated on-line based on feedbacks from the network's quality of service monitoring mechanism. The schemes we propose remove the dependence on accurate traffic models and thus simplify the tasks of supplying traffic statistics required of network users. In this paper we present two dynamic algorithms. The objective of these algorithms is to find the minimum bandwidth necessary to satisfy a cell loss probability constraint at an asynchronous transfer mode (ATM) switch. We show that in both schemes the bandwidth chosen by the algorithm approaches the optimal value almost surely. Furthermore, in the second scheme, which determines the point closest to the optimal bandwidth from a finite number of choices, the expected learning time is finite.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.