We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathbf{G}$ be the connected reductive group of type $E_{7,3}$ over $\mathbb{Q}$ and $\mathfrak{T}$ be the corresponding symmetric domain in $\mathbb{C}^{27}$. Let ${\rm\Gamma}=\mathbf{G}(\mathbb{Z})$ be the arithmetic subgroup defined by Baily. In this paper, for any positive integer $k\geqslant 10$, we will construct a (non-zero) holomorphic cusp form on $\mathfrak{T}$ of weight $2k$ with respect to ${\rm\Gamma}$ from a Hecke cusp form in $S_{2k-8}(\text{SL}_{2}(\mathbb{Z}))$. We follow Ikeda’s idea of using Siegel’s Eisenstein series, their Fourier–Jacobi expansions, and the compatible family of Eisenstein series.
A general mean value theorem for Dirichlet series, with a sharp error estimate near the boundary of the critical strip, is proved. Applications of this theorem to various automorphic $L$-functions are discussed. Moreover, sharp upper bounds of mean square values of $L$-functions are obtained when they are attached to lifted forms, such as Doi–Naganuma and Ikeda lifts in the theory of Siegel modular forms.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.