We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this study is to evaluate the effectiveness and sensitivity of the Varian portal dosimetry (PD) system as a quality assurance (QA) tool for breast intensity-modulated radiation therapy (IMRT) treatment plans.
Materials and methods:
Four hundred portal dose images from 200 breast cancer patient IMRT treatment plans were analysed. The images were obtained using Varian PortalVision electronic portal imaging devices (EPIDs) on Varian TrueBeam Linacs. Three patient plans were selected, and the multi-leaf collimator (MLC) positions were randomly altered by a mean of 0·5, 1, 1·5 and 2 mm with a standard deviation of 0·1 mm on 50, 75 and 100% of control points. Using the improved/global gamma calculation algorithm with a low-dose threshold of 10% in the EPID, the change in gamma passing rates for 3%/3 mm, 2%/2 mm and 1%/1 mm criterion was analysed as a function of the introduced error. The changes in the dose distributions of clinical target volume and organ at risk due to MLC positioning errors were also analysed.
Results:
Symmetric and asymmetric breast or chest wall plan fields are different in delivery as well as in the QA. An average gamma passing rate of 99·8 ± 0·5 is presented for 3%/3 mm symmetric plans and 96·9 ± 4·5 is presented for 3%/3 mm asymmetric plans. An average gamma passing rate of 98·4 ± 4·3 is presented for 2%/2 mm symmetric plans and 89·7 ± 9·5 is presented for 2%/2 mm asymmetric plans. A large-induced error in MLC positioning (2·0 mm, 100% of control points) results in an insignificant change in dose that would be delivered to the patient. However, EPID portal dosimetry is sensitive enough to detect even the slightest change in MLC positioning error (0·5 mm, 50% of control points).
Conclusions:
Stricter pre-treatment QA action levels can be established for breast IMRT plans utilising EPID. For improved sensitivity, a multigamma criteria approach is recommended. The PD tool is sensitive enough to detect MLC positioning errors that contribute to even insignificant dose changes.
This study aimed to examine the dosimetric properties of Gafchromic® EBT3 film and intensity-modulated radiation therapy quality assurance (IMRT QA).
Materials and methods
Beams characteristics dosimetric properties and 20 IMRT plans were created and irradiated on Varian dual-energy DHX-S Linac for 6 and 15 MV energies. EBT3 films were analysed using ‘film Pro QA 2014’ software.
Results
The dosimetric comparison of EBT3 film (for red channel dosimetry) and ionisation ion chamber measurement showed that average deviations of symmetry, flatness, central axis, penumbra (left) and penumbra (right) of dose profile were 0·18, 1·34, 0·49%, 3·68 and 3·61 mm for 6 MV and 0·10, 1·3, 0·45, 2·65 and 2·71 mm for 15 MV, respectively. The blue and green channels dosimetry showed greater dose deviation as compared with red channel. IMRT QA verification plan complied about 95% at all different criteria. Reproducibility, stability and face orientation of film were within 1·4% for red channel.
Conclusions
The results advocate that the film can be used not only for dosimetric assessment but also as a reliable IMRT QA tool.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.