We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a graph $H$, let us denote by $f_\chi (H)$ and $f_\ell (H)$, respectively, the maximum chromatic number and the maximum list chromatic number of $H$-minor-free graphs. Hadwiger’s famous colouring conjecture from 1943 states that $f_\chi (K_t)=t-1$ for every $t \ge 2$. A closely related problem that has received significant attention in the past concerns $f_\ell (K_t)$, for which it is known that $2t-o(t) \le f_\ell (K_t) \le O(t (\!\log \log t)^6)$. Thus, $f_\ell (K_t)$ is bounded away from the conjectured value $t-1$ for $f_\chi (K_t)$ by at least a constant factor. The so-called $H$-Hadwiger’s conjecture, proposed by Seymour, asks to prove that $f_\chi (H)={\textrm{v}}(H)-1$ for a given graph $H$ (which would be implied by Hadwiger’s conjecture).
In this paper, we prove several new lower bounds on $f_\ell (H)$, thus exploring the limits of a list colouring extension of $H$-Hadwiger’s conjecture. Our main results are:
For every $\varepsilon \gt 0$ and all sufficiently large graphs $H$ we have $f_\ell (H)\ge (1-\varepsilon )({\textrm{v}}(H)+\kappa (H))$, where $\kappa (H)$ denotes the vertex-connectivity of $H$.
For every $\varepsilon \gt 0$ there exists $C=C(\varepsilon )\gt 0$ such that asymptotically almost every $n$-vertex graph $H$ with $\left \lceil C n\log n\right \rceil$ edges satisfies $f_\ell (H)\ge (2-\varepsilon )n$.
The first result generalizes recent results on complete and complete bipartite graphs and shows that the list chromatic number of $H$-minor-free graphs is separated from the desired value of $({\textrm{v}}(H)-1)$ by a constant factor for all large graphs $H$ of linear connectivity. The second result tells us that for almost all graphs $H$ with superlogarithmic average degree $f_\ell (H)$ is separated from $({\textrm{v}}(H)-1)$ by a constant factor arbitrarily close to $2$. Conceptually these results indicate that the graphs $H$ for which $f_\ell (H)$ is close to the conjectured value $({\textrm{v}}(H)-1)$ for $f_\chi (H)$ are typically rather sparse.
Hadwiger’s conjecture asserts that every graph without a
$K_t$
-minor is
$(t-1)$
-colourable. It is known that the exact version of Hadwiger’s conjecture does not extend to list colouring, but it has been conjectured by Kawarabayashi and Mohar (2007) that there exists a constant
$c$
such that every graph with no
$K_t$
-minor has list chromatic number at most
$ct$
. More specifically, they also conjectured that this holds for
$c=\frac{3}{2}$
.
Refuting the latter conjecture, we show that the maximum list chromatic number of graphs with no
$K_t$
-minor is at least
$(2-o(1))t$
, and hence
$c \ge 2$
in the above conjecture is necessary. This improves the previous best lower bound by Barát, Joret and Wood (2011), who proved that
$c \ge \frac{4}{3}$
. Our lower-bound examples are obtained via the probabilistic method.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.