We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Here, we dive deeper into the realm of reversible Markov chains, via the perspective of network theory. The notions of conductance and resistance are defined, as well as voltage and current, and the corresponding mathematical theory.The Laplacian and Green function are defined and their relation to harmonic functions explained. The chapter culminates with a proof (using network theory) that recurrence and transience are essentially group properties: these properties remain invariant when changing between different reasonable random walks on the same group (specifically, symmetric and adapted with finite second moment).
We study a skew Ornstein–Uhlenbeck process with zero being a sticky reflecting boundary, which is defined as the weak solution to a stochastic differential equation (SDE) system involving local time. The main results obtained include: (i) the existence and uniqueness of solutions to the SDE system, (ii) the scale function and speed measure, and (iii) the distributional properties regarding the transition density and the first hitting times. On the application side, we apply the process to interest rate modeling and obtain the explicit pricing formula for zero-coupon bonds. Numerical examples illustrate the impacts on bond yields of skewness and stickiness parameters.
The boundary integral equation method, also known as the method of singularities, is described. The Green function, consisting of Rankine and Kelvin parts, is introduced. Application of Green’s identity leads to an integral equation, which is solved numerically. Numerical aspects are covered, such as how to remedy the problem of irregular frequencies, or include coexisting current.
This chapter enters “theoretical physics”, giving significant examples of the arguments by which physicists try to justify the success of their methods. Formal series in diagrams take a life of their own. A major discovery is that the parameter which is called m in the model, and which is supposed to represent the mass of the particle cannot possibly be the mass of the particle as it is measured in the laboratory. In other words, self-interaction changes the mass of the particle. This is the phenomenon of mass renormalization. We also approach an even deeper mystery, the phenomenon of field renormalization, which forces us to revisit the method we used in Chapter 13 to compute the S-matrix. We also explain why all these efforts barely provide any convincing support of the physicist’s methods, because these use a huge leap of faith which is mostly kept implicit in their work.
It presents the unitary time evolution operator and its integral kernel in the space representation, also known as the quantum-mechanical propagator. It introduces the resolvent operator and its analytical properties, and it discusses in some detail scattering theory in one dimension.
We prove the existence and asymptotic behaviour of the transition density for a large class of subordinators whose Laplace exponents satisfy lower scaling condition at infinity. Furthermore, we present lower and upper bounds for the density. Sharp estimates are provided if an additional upper scaling condition on the Laplace exponent is imposed. In particular, we cover the case when the (minus) second derivative of the Laplace exponent is a function regularly varying at infinity with regularity index bigger than
$-2$
.
In this second introductory chapter, the concept of gravitational potential is presented and then developed up to the level usually encountered in applications of stellar dynamics, such as the computation of the gravitational fields of disks and heterogeneous triaxial ellipsoids, the construction of the far-field multipole expansion of the gravitational field of generic mass distributions, and finally the expansion to orthogonal functions of the Green function for the Laplace operator.
Internal diffusion-limited aggregation (IDLA) is a stochastic growth model on a graph G which describes the formation of a random set of vertices growing from the origin (some fixed vertex) of G. Particles start at the origin and perform simple random walks; each particle moves until it lands on a site which was not previously visited by other particles. This random set of occupied sites in G is called the IDLA cluster. In this paper we consider IDLA on Sierpinski gasket graphs, and show that the IDLA cluster fills balls (in the graphmetric) with probability 1.
We prove that for $0<p<+\infty $ and $-1<\alpha <+\infty ,$ a conformal map defined on the unit disk belongs to the weighted Bergman space $A_{\alpha }^p$ if and only if a certain integral involving the hyperbolic distance converges.
Investigation of SH wave scattering by inclusions in bi-material half space is an important issue in engineering. The purpose of this work is to study the dynamic response of a semi-circle inclusion embedded in bi-material half space surface by SH wave. Graf's addition theorem, Green function method and region-matching technique are used to determine the displacement fields in the bi-material half space and the inclusion. The distributions of dynamic stress concentration factor (DSCF) around the semi-circle inclusion are depicted graphically considering different material parameters. The results show that the frequency and the incidence angle of SH wave, the rigidities of the inclusion and bi-material half space, and the distance from the inclusion to the interface have a great effect on the distribution of DSCF around the inclusion.
The star function was originally developed to prove the spread theorem, a problem dealing with meromorphic functions in the complex plane. The first sections prove the spread theorem, along with other applications to the study of these functions. Later sections center on analytic functions in the unit disk. The star function technique yields to sharp estimates for integral means of univalent functions and the (harmonic) conjugate function, along with the behavior of the Green function and harmonic measure under symmetrization. The final section extends some results to domains of arbitrary connectivity. The chapter includes the necessary background in Nevanlinna theory and the Poincaré metric on hyperbolic plane domains, and in almost all cases, the mappings which exhibitextremal behavior are identified.
At the ANZIAM conference in Hobart in February 2018, there were several talks on the solution of Laplace problems in multiply connected domains by means of conformal mapping. It appears to be not widely known that such problems can also be solved by the elementary method of series expansions with coefficients determined by least-squares fitting on the boundary. (These are not convergent series; the coefficients depend on the degree of the approximation.) Here we give a tutorial introduction to this method, which converges at an exponential rate if the boundary data are sufficiently well-behaved. The mathematical foundations go back to Runge in 1885 and Walsh in 1929. One of our examples involves an approximate Cantor set with up to 2048 components.
The paper is to solve the problem of the response of stratified half-space subjected to triangularly distributed time-harmonic loadings on an axial symmetric area in the stratified half-space. Since the distributed area can be very small, the solution can be employed to deal with the problems of elastodynamics using the fundamental solution method. The advantage of the presented solution over Green function is that no singularity will occur in the presented solution. Some numerical results are given and some conclusions have been made. The presented solution is very efficient in computation.
We prove that, in a setting of local Dirichlet forms on metric measure spaces, a two-sided sub-Gaussian estimate of the heat kernel is equivalent to the conjunction of the volume doubling property, the elliptic Harnack inequality, and a certain estimate of the capacity between concentric balls. The main technical tool is the equivalence between the capacity estimate and the estimate of a mean exit time in a ball that uses two-sided estimates of a Green function in a ball.
We study the biharmonic equation Δ2u = u−α, 0 < α < 1, in a smooth and bounded domain Ω ⊂ ℝn, n ≥ 2, subject to Dirichlet boundary conditions. Under some suitable assumptions on Ω related to the positivity of the Green function for the biharmonic operator, we prove the existence and uniqueness of a solution.
In this paper we prove that sub-Gaussian estimates of heat kernels of regular Dirichlet forms are equivalent to the regularity of measures, two-sided bounds of effective resistances and the locality of semigroups, on strongly recurrent compact metric spaces. Upper bounds of effective resistances imply the compact embedding theorem for domains of Dirichlet forms, and give rise to the existence of Green functions with zero Dirichlet boundary conditions. Green functions play an important role in our analysis. Our emphasis in this paper is on the analytic aspects of deriving two-sided sub-Gaussian bounds of heat kernels. We also give the probabilistic interpretation for each of the main analytic steps.
We consider a random walker on a d-regular graph. Starting from a fixed vertex, the first step is a unit step in any one of the d directions, with common probability 1/d for each one. At any later step, the random walker moves in any one of the directions, with probability q for a reversal of direction and probability p for any other direction. This model was introduced and first studied by Gillis (1955), in the case when the graph is a d-dimensional square lattice. We prove that the Gillis random walk on a d-regular graph is recurrent if and only if the simple random walk on the graph is recurrent. The Green function of the Gillis random walk will be also given, in terms of that of the simple random walk.
We investigate the asymptotical behaviour of the transition probabilities of the simple random walk on the 2-comb. In particular, we obtain space-time uniform asymptotical estimates which show the lack of symmetry of this walk better than local limit estimates. Our results also point out the impossibility of getting sub-Gaussian estimates involving the spectral and walk dimensions of the graph.
We consider in this article diagonal parabolic systems arising in the context of stochastic differential games.We address the issue of finding smooth solutions of the system. Such a regularity result is extremely important to derive an optimal feedback proving the existence of a Nash point of a certain class of stochastic differential games.Unlike in the case of scalar equation, smoothness of solutions is not achieved in general. A special structure of the nonlinear Hamiltonian seems to be the adequate one to achieve the regularity property. A key step in the theory is to prove the existence of Hölder solution.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.