Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:50:40.061Z Has data issue: false hasContentIssue false

Smooth Solutions of systemsof quasilinear parabolic equations

Published online by Cambridge University Press:  15 August 2002

Alain Bensoussan
Affiliation:
University Paris-Dauphine and CNES, France.
Jens Frehse
Affiliation:
Institut für Angewandte Mathematik der Universität Bonn, Germany.
Get access

Abstract

We consider in this article diagonal parabolic systems arising in the context of stochastic differential games.We address the issue of finding smooth solutions of the system. Such a regularity result is extremely important to derive an optimal feedback proving the existence of a Nash point of a certain class of stochastic differential games.Unlike in the case of scalar equation, smoothness of solutions is not achieved in general. A special structure of the nonlinear Hamiltonian seems to be the adequate one to achieve the regularity property. A key step in the theory is to prove the existence of Hölder solution.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aronson, D.G., Bounds for Fundamental Solution of a Parabolic Equation. Bull. Amer. Math. Soc. 73 (1968) 890-896. CrossRef
A. Bensoussan and J. Frehse, Regularity of Solutions of Systems of Partial Differential Equations and Applications. Springer Verlag (to be published).
Bensoussan, A. and Frehse, J., Nonlinear elliptic systems in stochastic game theory. J. Reine Angew. Math. 350 (1984) 23-67.
Bensoussan, A. and Frehse, J., C α -Regularity Results for Quasi-Linear Parabolic Systems. Comment. Math. Univ. Carolin. 31 (1990) 453-474.
A. Bensoussan and J. Frehse, Ergodic Bellman systems for stochastic games, in Differential equations, dynamical systems, and control science. Dekker, New York (1994) 411-421.
Bensoussan, A. and Frehse, J., Ergodic Bellman systems for stochastic games in arbitrary dimension. Proc. Roy. Soc. London Ser. A 449 (1935) 65-77. CrossRef
A. Bensoussan and J. Frehse, Stochastic games for N players. J. Optim. Theory Appl. bf105 (2000) 543-565. Special Issue in honor of Professor David G. Luenberger.
A. Bensoussan and J.-L. Lions, Impulse control and quasivariational inequalities. Gauthier-Villars (1984). Translated from the French by J.M. Cole.
S. Campanato, Equazioni paraboliche del secondo ordine e spazi $L^{2,theta}(Omega, delta )$ . Ann. Mat. Pura Appl. (4) 73 (1966) 55-102.
G. Da Prato, Spazi $L^{(p,theta )}(Omega, delta )$ e loro proprietà. Ann. Mat. Pura Appl. (4) 69 (1965) 383-392.
J. Frehse, Remarks on diagonal elliptic systems, in Partial differential equations and calculus of variations. Springer, Berlin (1988) 198-210.
J. Frehse, Bellman Systems of Stochastic Differential Games with three Players in Optimal Control and Partial Differential Equations, edited by J.L. Menaldi, E. Rofman and A. Sulem. IOS Press (2001).
Hildebrandt, S. and Widman, K.-O., Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142 (1975) 67-86. CrossRef
Leray, J. and Lions, J.-L., Quelques résultats de Viv sik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965) 97-107. CrossRef
O.A. Ladyvzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence, R.I. (1967).
Struwe, M., On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems. Manuscripta Math. 35 (1981) 125-145. CrossRef
Wiegner, M., Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme. Math. Z. 147 (1976) 21-28. Copyright EDP Sciences, SMAI 2002 CrossRef