We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a determinantal point process (DPP) X with a kernel K whose spectrum is strictly less than one, André Goldman has established a coupling to its reduced Palm process $X^u$ at a point u with $K(u,u)>0$ so that, almost surely, $X^u$ is obtained by removing a finite number of points from X. We sharpen this result, assuming weaker conditions and establishing that $X^u$ can be obtained by removing at most one point from X, where we specify the distribution of the difference $\xi_u: = X\setminus X^u$. This is used to discuss the degree of repulsiveness in DPPs in terms of $\xi_u$, including Ginibre point processes and other specific parametric models for DPPs.
The Ginibre point process (GPP) is one of the main examples of determinantal point processes on the complex plane. It is a recurring distribution of random matrix theory as well as a useful model in applied mathematics. In this paper we briefly overview the usual methods for the simulation of the GPP. Then we introduce a modified version of the GPP which constitutes a determinantal point process more suited for certain applications, and we detail its simulation. This modified GPP has the property of having a fixed number of points and having its support on a compact subset of the plane. See Decreusefond et al. (2013) for an extended version of this paper.
Stochastic geometry models for wireless communication networks have recently attracted much attention. This is because the performance of such networks critically depends on the spatial configuration of wireless nodes and the irregularity of the node configuration in a real network can be captured by a spatial point process. However, most analysis of such stochastic geometry models for wireless networks assumes, owing to its tractability, that the wireless nodes are deployed according to homogeneous Poisson point processes. This means that the wireless nodes are located independently of each other and their spatial correlation is ignored. In this work we propose a stochastic geometry model of cellular networks such that the wireless base stations are deployed according to the Ginibre point process. The Ginibre point process is one of the determinantal point processes and accounts for the repulsion between the base stations. For the proposed model, we derive a computable representation for the coverage probability—the probability that the signal-to-interference-plus-noise ratio (SINR) for a mobile user achieves a target threshold. To capture its qualitative property, we further investigate the asymptotics of the coverage probability as the SINR threshold becomes large in a special case. We also present the results of some numerical experiments.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.