We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To estimate the current evidence regarding the association between gestational acrylamide (AA) exposure and offspring’s growth.
Design:
Systematic review and meta-analysis.
Setting:
A systematic literature search for relevant publications was conducted using PubMed, Medline, Embase, Web of Science databases from inception to 26 April 2019. The standardised mean difference (SMD) or OR with 95 % CI was selected as the effect sizes and was calculated using a random effects model.
Results:
Five cohort studies including 54 728 participants were identified. Offspring’s birth weight was significantly lower in high AA exposure group than in low AA exposure group (SMD –0·05, 95 % CI –0·09, –0·02, P = 0·005). There was also an association between maternal AA exposure and small for gestational age (OR 1·14, 95 % CI 1·06, 1·23, P < 0·001). In addition, pooled ORs suggested that children had a high risk of developing overweight/obesity in the future in maternal high AA exposure group (OR 1·14, 95 % CI 1·08, 1·21, P < 0·001 at age 3; OR 1·13, 95 % CI 1·07, 1·19, P < 0·001 at age 5; OR 1·09, 95 % CI 1·02, 1·16, P = 0·020 at age 8).
Conclusions:
These findings have important implications for conducting health education, providing guidance on maternal diet and developing an appropriate dietary strategy for pregnant women to reduce dietary AA exposure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.