We consider an insurance entity endowed with an initial capital and a surplus process modelled as a Brownian motion with drift. It is assumed that the company seeks to maximise the cumulated value of expected discounted dividends, which are declared or paid in a foreign currency. The currency fluctuation is modelled as a Lévy process. We consider both cases: restricted and unrestricted dividend payments. It turns out that the value function and the optimal strategy can be calculated explicitly.