In small meta-analyses (e.g., up to 20 studies), the best-performing frequentist methods can yield very wide confidence intervals for the meta-analytic mean, as well as biased and imprecise estimates of the heterogeneity. We investigate the frequentist performance of alternative Bayesian methods that use the invariant Jeffreys prior. This prior has the usual Bayesian motivation, but also has a purely frequentist motivation: the resulting posterior modes correspond to the established Firth bias correction of the maximum likelihood estimator. We consider two forms of the Jeffreys prior for random-effects meta-analysis: the previously established “Jeffreys1” prior treats the heterogeneity as a nuisance parameter, whereas the “Jeffreys2” prior treats both the mean and the heterogeneity as estimands of interest. In a large simulation study, we assess the performance of both Jeffreys priors, considering different types of Bayesian estimates and intervals. We assess point and interval estimation for both the mean and the heterogeneity parameters, comparing to the best-performing frequentist methods. For small meta-analyses of binary outcomes, the Jeffreys2 prior may offer advantages over standard frequentist methods for point and interval estimation of the mean parameter. In these cases, Jeffreys2 can substantially improve efficiency while more often showing nominal frequentist coverage. However, for small meta-analyses of continuous outcomes, standard frequentist methods seem to remain the best choices. The best-performing method for estimating the heterogeneity varied according to the heterogeneity itself. Röver & Friede’s R package bayesmeta implements both Jeffreys priors. We also generalize the Jeffreys2 prior to the case of meta-regression.