We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter gives a brief but quantitative introduction to the method of Feynman diagrams in quantum field theory, sufficient for the reader to understand what these diagrams mean. The concept of “vacuum energy” is discussed in this context.
This chapter introduces how we can use the quantum fields introduced in the previous chapter to access amplitudes and, thus, measurable quantities, such as the cross sections and the particle lifetime. More specifically, an educational tour of quantum electrodynamics (QED), which describes the interaction of electrons (or any charged particles) with photons, is proposed. Although this chapter uses concepts from quantum field theory, it is not a course on that topic. Rather, the aim here is to expose the concepts and prepare the reader to be able to do simple calculations of processes at the lowest order. The notions of gauge invariance and the S-matrix are, however, explained. Many examples of Feynman diagrams and the calculation of the corresponding amplitudes are detailed. Summation and spin averaging techniques are also presented. Finally, the delicate concept of renormalisation is explained, leading to the notion of the running coupling constant.
In the first few sections we examine how we might define Hamiltonians which make physical sense, and we observe that the interaction picture, on which the entire approach is built, is fraught with mathematical inconsistencies. Nonetheless we proceed using it to compute the S-matrix in some of the simplest possible models. This is the heart of the theory. In a very progressive fashion we introduce the main tools, Wick’s theorem and the Feynman propagator, a very special tempered distribution. We then introduce Feynman’s diagrams. Each diagram encodes a term of a complicated calculation, and we give an algorithm to compute the value of such a diagram by a complicated integral. We pay great attention to clarify the nature and the role of the so-called symmetry factors. We then receive the bad news. As soon as the diagrams contain loops the integral giving its value has an irresistible tendency to diverge, a consequence of having attempted an ill-defined multiplication of distributions. We then show how to get a sensible physical prediction out of these infinite integrals, first in the relatively easy case of diagrams with one loop, and then in the much deeper case of diagrams with two loops, which involves a remarkable “cancellation of infinities”. We also introduce the physicist’s counter-term method to produce such cancellations.
This chapter presents Feynman’s formulation of quantum mechanics, based on a path integral representation of the evolution operator. The chapter presents detailed examples which make it possible to understand clearly Feynman’s “sum over paths,” and it contains a complete discussion of how to calculate Gaussian path integrals. It also discusses the Euclidean version of the path integral, as well as Wick’s theorem and Feynman diagrams. Finally, it discusses instantons in quantum mechanics.
Chapter 5 described quantum mechanics in the context of particles moving in a potential. This application of quantum mechanics led to great advances in the 1920s and 1930s in our understanding of atoms, molecules, and much else. But, starting around 1930 and increasingly since then, theoretical physicists have become aware of a deeper description of matter, in terms of fields. Just as Einstein and others had much earlier recognized that the energy and momentum of the electromagnetic field is packaged in bundles, the particles later called photons, so also there is an electron field whose energy and momentum is packaged in particles, observed as electrons, and likewise for every other sort of elementary particle. Indeed, in practice this is what we now mean by an elementary particle: it is the quantum of some field that appears as an ingredient in whatever seem to be the fundamental equations of physics at any stage in our progress.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.