We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove that the ratio of the modulus of the iterates of two points in an escaping Fatou component could be bounded even if the orbit of the component contains a sequence of annuli whose moduli tend to infinity, and this cannot happen when the maximal modulus of the meromorphic function is uniformly large enough. In this way we extend certain related results for entire functions to meromorphic functions with infinitely many poles.
A function which is transcendental and meromorphic in the plane has at least two singular values. On the one hand, if a meromorphic function has exactly two singular values, it is known that the Hausdorff dimension of the escaping set can only be either
$2$
or
$1/2$
. On the other hand, the Hausdorff dimension of escaping sets of Speiser functions can attain every number in
$[0,2]$
(cf. [M. Aspenberg and W. Cui. Hausdorff dimension of escaping sets of meromorphic functions. Trans. Amer. Math. Soc.374(9) (2021), 6145–6178]). In this paper, we show that number of singular values which is needed to attain every Hausdorff dimension of escaping sets is not more than
$4$
.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.