Climate conditions are known to modulate infectious disease transmission, yet their impact on measles transmission remains underexplored. In this study, we investigate the extent to which climate conditions modulate measles transmission, utilizing measles incidence data during 2005–2008 from China. Three climate-forced models were employed: a sinusoidal function, an absolute humidity (AH)-forced model, and an AH and temperature (AH/T)-forced model. These models were integrated into an inference framework consisting of a susceptible–exposed–infectious–recovered (SEIR) model and an iterated filter (IF2) to estimate epidemiological characteristics and assess climate influences on measles transmission. During the study period, measles epidemics peaked in spring in northern China and were more diverse in the south. Our analyses showed that the AH/T model better captured measles epidemic dynamics in northern China, suggesting a combined impact of humidity and temperature on measles transmission. Furthermore, we preliminarily examined the impact of other factors and found that population susceptibility and incidence rate were both positively correlated with migrant worker influx, suggesting that higher susceptibility among migrant workers may sustain measles transmission. Taken together, our study supports a role of humidity and temperature in modulating measles transmission and identifies additional factors in shaping measles epidemic dynamics in China.