We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Atrial fibrillation (AF) is the most important cause of embolic stroke of undetermined source (ESUS). Implantable loop recorder (ILR) demonstrated the highest sensitivity for detecting it. This register was created to confirm the high prevalence of AF in patients after ESUS and to verify possible benefits on clinical outcomes such as TIA (Transient Ischaemic Attack)/stroke recurrence and death using ILR.
Methods:
A total of 278 patients admitted to “Molinette” Hospital in Stroke Unit department between 2011 and 2016, diagnosed with ESUS, underwent ILR implantation if they had at least one risk factor for AF. A total of 165 patients admitted to other departments in the same center for the same pathology, without ILR, represent the control group. We used propensity score to select 132 patients from each group (matching age, sex, CHADS-VASC, and HAS-BLEED baseline characteristics).
Results:
The detection rate of AF episodes was significantly higher in the ILR group (p < 0.001). No significant protective role of ILR for clinical endpoints was found on univariate analysis, although a trend towards significance has been pointed for the composite outcome of death and ischemic events recurrence (OR 0.52, CI 0.26–1.04, p = 0.06). A protective role of ILR was found for deaths (OR 0.4, CI 0.17–0.94, p 0.03) and for the composite outcome (OR 0.41, CI 0.19–0.87, p 0.02) on multivariate analysis in the best subsets.
Conclusion:
With our statistical models, we identified a significant clinical benefit from ILR monitoring, evidenced by a trend of less death and TIA/stroke recurrence and relevant ILR protection for prediction of TIA/stroke recurrence.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.