We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathcal {P}$ be the set of primes and $\pi (x)$ the number of primes not exceeding x. Let $P^+(n)$ be the largest prime factor of n, with the convention $P^+(1)=1$, and $ T_c(x)=\#\{p\le x:p\in \mathcal {P},P^+(p-1)\ge p^c\}. $ Motivated by a conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, Acta Math. Sin. (Engl. Ser.)33 (2017), 377–382], we show that for any c with $8/9\le c<1$,
The Euler–Mascheroni constant
$\gamma =0.5772\ldots \!$
is the
$K={\mathbb Q}$
example of an Euler–Kronecker constant
$\gamma _K$
of a number field
$K.$
In this note, we consider the size of the
$\gamma _q=\gamma _{K_q}$
for cyclotomic fields
$K_q:={\mathbb Q}(\zeta _q).$
Assuming the Elliott–Halberstam Conjecture (EH), we prove uniformly in Q that
In other words, under EH, the
$\gamma _q /\!\log q$
in these ranges converge to the one point distribution at
$1$
. This theorem refines and extends a previous result of Ford, Luca and Moree for prime
$q.$
The proof of this result is a straightforward modification of earlier work of Fouvry under the assumption of EH.
Goldson, Motohashi, Pintz and Yildirim’s work was the first major breakthrough for prime gaps. They showed that for each given proportion of the average gap, no matter how small, there were an infinite number of prime pairs distant apart less than that proportion. This was a major result, highly creative and technical, and rightly celebrated in the mathematical world and more broadly. This chapter provides a complete exposition of their work, giving background on how their ideas evolved, the basic structures (admissible tuples, truncated von Mongoldt functions, using two tuples simultaneously, extending tuples, using Gallagher’s asymptotic result, and using the Elliott–Halberstam conjecture to show the potential best gap size (i.e., 16) between consecutive primes, and that any improvement on Bombieri–Vinogradov would result in bounded gaps between primes. Each of the preliminary and fundamental lemmas are proved, as is the full proof and a simplified proof. To show how it all fits together, there is an overview and flow diagram. The methods are elementary, but intricate, the most being possibly an estimate based on a double complex contour integral. It is fair to say the work inspired, at least in part, each of the breakthroughs which followed, although only Zhang and Maynard used one or two of their results explicitly.
The level of distribution of a complex-valued sequence $b$ measures the quality of distribution of $b$ along sparse arithmetic progressions $nd+a$. We prove that the Thue–Morse sequence has level of distribution $1$, which is essentially best possible. More precisely, this sequence gives one of the first nontrivial examples of a sequence satisfying a Bombieri–Vinogradov-type theorem for each exponent $\theta <1$. This result improves on the level of distribution $2/3$ obtained by Müllner and the author. As an application of our method, we show that the subsequence of the Thue–Morse sequence indexed by $\lfloor n^c\rfloor$, where $1 < c < 2$, is simply normal. This result improves on the range $1 < c < 3/2$ obtained by Müllner and the author and closes the gap that appeared when Mauduit and Rivat proved (in particular) that the Thue–Morse sequence along the squares is simply normal.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.