We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hypertensive heart disease and hypertrophic cardiomyopathy both lead to left ventricular hypertrophy despite differing in aetiology. Elucidating the correct aetiology of the presenting hypertrophy can be a challenge for clinicians, especially in patients with overlapping risk factors. Furthermore, drugs typically used to combat hypertensive heart disease may be contraindicated for the treatment of hypertrophic cardiomyopathy, making the correct diagnosis imperative. In this review, we discuss characteristics of both hypertensive heart disease and hypertrophic cardiomyopathy that may enable clinicians to discriminate the two as causes of left ventricular hypertrophy. We summarise the current literature, which is primarily focused on adult populations, containing discriminative techniques available via diagnostic modalities such as electrocardiography, echocardiography, and cardiac MRI, noting strategies yet to be applied in paediatric populations. Finally, we review pharmacotherapy strategies for each disease with regard to pathophysiology.
To assess whether isolated very low QRS voltage of ≤0.3 mV in the frontal leads might be a marker for diagnosing paediatric vasovagal syncope and the risk of recurrence.
Methods:
We included 118 children with vasovagal syncope, comprising 70 males and 48 females in our retrospective analysis. All patients underwent head-up tilt test and supine 12-lead electrocardiography. Furthermore, the QRS voltage was measured from each one of the 12 leads on basal electrocardiography. Patients were followed up for 6–24 months (average, 16 months).
Results:
Eighty-six patients (73%) patients displayed isolated very low QRS voltage in frontal leads. Furthermore, the patients were classified into two groups based on the presence or absence of isolated very low QRS voltage. Enhanced syncopic spells over the past 6 months, and the positive rates of head-up tilt test were observed in patients having isolated very low QRS voltage in the frontal leads than those without isolated very low QRS voltage (p < 0.05). The single factor and time-to-event analyses also showed an increased syncope recurrence rate in patients with isolated very low QRS voltage in frontal leads when compared with those without isolated very low QRS voltage (p < 0.01).
Conclusions:
Isolated very low QRS voltage in frontal leads is correlated with the positive response of the head-up tilt test in children who experience syncope and its recurrence post-treatment. Hence, isolated very low QRS voltage in frontal leads might become a novel diagnostic indicator and a risk factor for syncope recurrence in children with vasovagal syncope.
To evaluate the use of a single-lead electrocardiography (1L-ECG) device and digital cardiologist consultation platform in diagnosing arrhythmias among general practitioners (GPs).
Background:
Handheld 1L-ECG offers a user-friendly alternative to conventional 12-lead ECG in primary care. While GPs can safely rule out arrhythmias on 1L-ECG recordings, expert consultation is required to confirm suspected arrhythmias. Little is known about GPs’ experiences with both a 1L-ECG device and digital consultation platform for daily practice.
Methods:
We used two distinct methods in this study. First, in an observational study, we collected and described all cases shared by GPs within a digital cardiologist consultation platform initiated by a local GP cooperative. This GP cooperative distributed KardiaMobile 1L-ECG devices among all affiliated GPs (n = 203) and invited them to this consultation platform. In the second part, we used an online questionnaire to evaluate the experiences of these GPs using the KardiaMobile and consultation platform.
Findings:
In total, 98 (48%) GPs participated in this project, of whom 48 (49%) shared 156 cases. The expert panel was able to provide a definitive rhythm interpretation in 130 (83.3%) shared cases and answered in a median of 4 min (IQR: 2–18). GPs responding to the questionnaire (n = 43; 44%) thought the KardiaMobile was of added value for rhythm diagnostics in primary care (n = 42; 98%) and easy to use (n = 41; 95%). Most GPs (n = 36; 84%) valued the feedback from the cardiologists in the consultation platform. GPs experienced this project to have a positive impact on both the quality of care and diagnostic efficiency for patients with (suspected) cardiac arrhythmias. Although we lack a comprehensive picture of experienced impediments by GPs, solving technical issues was mentioned to be helpful for further implementation. More research is needed to explore reasons of GPs not motivated using these tools and to assess real-life clinical impact.
This study aimed to analyse the influence of improved antenatal detection on the course, contemporary outcomes, and mortality risk factors of the complete atrioventricular block during fetal-neonatal and childhood periods in South Wales.
Methods:
The clinical characteristics and outcomes of complete atrioventricular block in patients without structural heart disease at the University Hospital of Wales from January 1966 to April 2021 were studied. Patients were divided into two groups according to their age at diagnosis: I-fetal-neonatal and II-childhood. Contemporary outcomes during the post-2001 era were compared with historical data preceding fetal service development and hence earlier detection.
Results:
There were 64 patients: 26 were identified in the fetal-neonatal period and the remaining 38 in the childhood period. Maternal antibodies/systemic lupus erythematosus disease (anti-Ro/Sjögren’s-syndrome-related Antigen A and/or anti-La/Sjögren’s-syndrome-related Antigen B) were present in 15 (57.7%) of the fetal-neonatal. Fetal/neonatal and early diagnosis increased after 2001 with an incidence of 1:25000 pregnancies. Pacemaker implantation was required in 34 patients, of whom 13 were diagnosed in the fetal-neonatal group. Survival rates in cases identified before 2001 were at 96.3% (26/27), whereas it was 83.8% (31/37) in patients diagnosed after 2001 (P > 0.05). Other mortality risk factors comprised a lower gestational week at birth, maternal antibodies, and an average ventricular heart rate of < 55 bpm.
Conclusions:
Fetal diagnosis of complete atrioventricular block is still portends high fetal and neonatal mortality and morbidity despite significantly improved antenatal detection after 2001. Pacemaker intervention is needed earlier in the fetal-neonatal group. Whether routine antenatal medical treatment might alter this outcome calls for further prospective multicentre studies.
Noonan syndrome is a multi-system genetic disorder and patients may suffer from hypertrophic cardiomyopathy. Previous studies have identified electrocardiographic features that may support a diagnosis of Noonan syndrome. In this two-centre retrospective study, we analysed typical Noonan syndrome-related electrocardiographic features in 30 patients with Noonan syndrome with hypertrophic cardiomyopathy and compared these with the electrocardiographic features in 15 children with sarcomeric hypertrophic cardiomyopathy. Typical Noonan syndrome-related electrocardiographic features are a negative aVF, small left precordial R-waves, large right precordial S-waves, and abnormal Q-wave. We also analysed electrocardiographic features of hypertrophic cardiomyopathy: ST-segment abnormalities and T-wave abnormalities. A negative aVF was seen in 83% of patients with Noonan syndrome-related hypertrophic cardiomyopathy in contrast to 27% of patients with primary sarcomeric hypertrophic cardiomyopathy (p < 0.001). An extreme QRS axis in the north-west was seen only in patients with Noonan syndrome-related hypertrophic cardiomyopathy. This QRS axis deviation is likely to be determined by the Noonan syndrome-related hypertrophic cardiomyopathy and not by the type of hypertrophic cardiomyopathy. There were no differences between the two groups in the frequency of large right precordial S-waves and small R-waves in the left precordial leads V5 and V6. However, an abnormal R/S ratio was more often seen in patients with Noonan syndrome-related hypertrophic cardiomyopathy (p < 0.001). Pathologic Q-waves were seen statistically more frequently in patients with sarcomeric hypertrophic cardiomyopathy (p = 0.009). The occurrence of ST-segment and T-wave pathology did not statistically differ between the two groups. Electrography can be of use in differentiating sarcomeric hypertrophic cardiomyopathy from Noonan syndrome-related hypertrophic cardiomyopathy.
Cardiac manifestations of the coronavirus disease 2019 (COVID-19) have mainly been reported in adults. Therefore, we aimed to determine the electrocardiographic abnormalities in hospitalised paediatric patients with COVID-19 and multisystemic inflammatory syndrome in children.
Methods:
We retrospectively evaluated hospitalised paediatric patients <18 years of age with a diagnosis of COVID-19 (n = 168) and multisystem inflammatory syndrome in children (n = 48) between March 2021 and December 2021. A daily electrocardiography was performed for the patients who had electrocardiographic abnormalities on admission or developed electrocardiographic abnormality on the follow-up. The characteristics of these patients, underlying predisposing conditions, and clinical course were also examined.
Results:
Two-hundred sixteen paediatric patients (55% were male) with a mean age of 10.7 ± 4.69 years were evaluated. There was an underlying disease in 84 (38.8%) patients and 51 (23.6%) required paediatric ICU admission. Electrocardiography abnormality was detected in 12 (5.5%) which were as follows: 7 (3.2%) had sinus bradycardia, 3 (1.4%) patients had transient ST elevation and concomitant T negativity, and 2 (0.9%) developed first-degree Atrioventricular (AV) block. The median time from the onset of disease symptoms to detecting electrocardiographic abnormality was 9 days. Electrocardiographic abnormalities returned to normal uneventfully 3 days later.
Conclusions:
The prevalence of arrhythmia in paediatric patients with COVID-19 was detected in 5.5% of the patients. While two-thirds of the electrocardiography abnormalities were sinus bradycardia, ST elevation was remarkable (1.4%). Clinicians should be aware of electrocardiographic abnormalities and consider electrocardiographic monitoring in paediatric patients with COVID-19 and multisystemic inflammatory syndrome in children.
Previous studies have demonstrated the use of virtual reality (VR) in mass-casualty incident (MCI) simulation; however, it is uncertain if VR simulations can be a substitute for in-person disaster training. Demonstrating that VR MCI scenarios can elicit the same desired stress response achieved in live-action exercises is a first step in showing non-inferiority. The primary objective of this study was to measure changes in sympathetic nervous system (SNS) response via a decrease in heart rate variability (HRV) in subjects participating in a VR MCI scenario.
Methods:
An MCI simulation was filmed with a 360º camera and shown to participants on a VR headset while simultaneously recording electrocardiography (EKG) and HRV activity. Baseline HRV was measured during a calm VR scenario immediately prior to exposure to the MCI scenarios, and SNS activation was captured as a decrease in HRV compared to baseline. Cognitive stress was measured using a validated questionnaire. Wilcoxon matched pairs signed rank analysis, Welch’s t-test, and multivariate logistic regression were performed with statistical significance established at P <.05.
Results:
Thirty-five subjects were enrolled: eight attending physicians (two surgeons, six Emergency Medicine [EM] specialists); 13 residents (five Surgery, eight EM); and 14 medical students (six pre-clinical, eight clinical-year students). Sympathetic nervous system activation was observed in all groups during the MCI compared to baseline (P <.0001) and occurred independent of age, sex, years of experience, or prior MCI response experience. Overall, 23/35 subjects (65.7%) reported increased cognitive stress in the MCI (11/14 medical students, 9/13 residents, and 3/8 attendings). Resident and attending physicians had higher odds of discordance between SNS activation and cognitive stress compared to medical students (OR = 8.297; 95% CI, 1.408-64.60; P = .030).
Conclusions:
Live-actor VR MCI simulation elicited a strong sympathetic response across all groups. Thus, VR MCI training has the potential to guide acquisition of confidence in disaster response.
Adult patients diagnosed with type 1 diabetes mellitus are at risk for ventricular arrhythmias and sudden cardiac death.
Aim:
The objective of our study is to evaluate the electrocardiographic data of children diagnosed with type 1 diabetes mellitus and to determine the possibility of arrhythmia in order to prevent sudden death.
Methods:
Electrocardiographic data of 60 patients diagnosed with type 1 diabetes mellitus and 86 controls, who were compatible with the patient group in terms of age and gender, were compared.
Results:
The duration of diabetes in our patients with type 1 diabetes mellitus was 5.23 ± 1.76 years, and the haemoglobin A1c levels were 9.63% ± 1.75%. The heart rate, QRS, QT maximum, QT dispersion, QTc minimum, QTc maximum, QTc dispersion, Tp-e maximum, Tp-e maximum/QTc maximum and the JTc were significantly higher compared to the control group. There was no significant correlation between the duration of type 1 diabetes mellitus and HbA1c levels and the electrocardiographic data.
Conclusion:
We attributed the lack of a significant correlation between the duration of type 1 diabetes mellitus and the haemoglobin A1c levels and the electrocardiographic data to the fact that the duration of diabetes was short, since our patients were children. We believe that patients with type 1 diabetes mellitus should be followed up closely in terms of sudden death, as they have electrocardiographic changes that may cause arrhythmias compared to the control group. However, more studies with longer follow-up periods are necessary to support our data.
Ventricular repolarisation changes may lead to sudden cardiac death in obese individuals. We aimed to investigate the relationship between ventricular repolarisation changes, echocardiographic parameters, anthropometric measures, and metabolic syndrome laboratory parameters in obese children.
Methods:
The study involved 81 obese and 82 normal-weight healthy children with a mean age of 12.3 ± 2.7 years. Anthropometric measurements of participants were evaluated according to nomograms. Obese patients were subdivided into two groups; metabolic syndrome and non-metabolic syndrome obese. Fasting plasma glucose, fasting insulin, and lipid profile were measured. QT/QTc interval, QT/QTc dispersions were measured, and left ventricular systolic and diastolic measurements were performed.
Results:
Body weight, body mass index, relative body mass index, waist/hip circumference ratio, and systolic and diastolic blood pressures were significantly higher in obese children. QT and QTc dispersions were significantly higher in obese children and also obese children with metabolic syndrome had significantly higher QT and QTc dispersions compared to non-metabolic syndrome obese children (p < 0.001) and normal-weight healthy children (p < 0.001). Waist/hip circumference ratio, body mass index, and relative body mass index were the most important determinant of QT and QTc dispersions. Left ventricular wall thickness (left ventricular posterior wall thickness at end-diastole, left ventricular posterior wall thickness at end-systole, interventricular septal thickness at end-diastole) and left ventricular mass index were significantly higher and ejection fraction was lower in obese children. Left ventricular mass index and interventricular septal thickness at end-diastole were positively correlated with QT and QTc dispersions.
Conclusions:
Our study demonstrated that QT/ QTc interval prolongation and increase in QT and QTc dispersion on electrocardiogram may be found at an early age in obese children.
Iron overload is associated with an increased risk of atrial and ventricular arrhythmias. Data regarding the relationship between electrocardiographic parameters of atrial depolarisation and ventricular repolarisation with cardiac T2* MRI are scarce. Therefore, we aimed to investigate these electrocardiographic parameters and their relationship with cardiac T2* value in patients with β-thalassemia major. In this prospective study, 52 patients with β-thalassemia major and 52 age- and gender-matched healthy patients were included. Electrocardiographic measurements of QT, T peak to end interval, and P wave intervals were performed by one cardiologist who was blind to patients’ data. All patients underwent MRI for cardiac T2* evaluation. Cardiac T2* scores less than 20 ms were considered as iron overload. P wave dispersion, QTc interval, and the dispersions of QT and QTc were significantly prolonged in β-thalassemia major patients compared to controls. Interestingly, we found prolonged P waves, QT and T peak to end dispersions, T peak to end intervals, and increased T peak to end/QT ratios in patients with T2* greater than 20 ms. No significant correlation was observed between electrocardiographic parameters and cardiac T2* values and plasma ferritin levels. In conclusion, our study demonstrated that atrial depolarisation and ventricular repolarisation parameters are affected in β-thalassemia major patients and that these parameters are not correlated with cardiac iron load.
To explore measures in electrocardiograms (ECG) influenced by autonomic balance in early schizophrenia spectrum disorders and to examine their relation to subsequent first antipsychotic pharmacotherapy discontinuation and five-year remission status.
Subjects and methods
Twelve-lead ECGs were recorded at baseline in 58 patients with first-episode schizophrenia spectrum disorders and in 47 healthy controls of similar age. Selected ECG variables included heart rate and measures of repolarization. Pharmacotherapy data were extracted from medical records. At a five-year follow-up the patients were interviewed and assessed with the Positive and Negative Syndrome Scale.
Results
Patients had higher heart rate and a different ST-T pattern than the controls. High T-wave amplitudes in the leads aVF and V5 and ST-elevations in V5 were associated both with higher risk of an earlier discontinuation of first antipsychotic pharmacotherapy and with non-remission five years later.
Discussion and conclusion
In this longitudinal cohort study, simple ECG measures influenced by autonomic balance in the early phase of schizophrenia spectrum disorders contained prognostic information. As this is the first report of this association and is based on a relatively small sample, the results should be interpreted with caution.
Transcutaneous vagus nerve stimulation (tVNS) is a promising therapeutic option for major depressive disorder (MDD) in adults. Alternative third-line treatments for MDD in adolescents are scarce. Here we aimed to assess the effects of acute tVNS on emotion recognition in adolescents with MDD.
Methods
Adolescents (14–17 years) with MDD (n = 33) and non-depressed controls (n = 30) received tVNS or sham-stimulation in a cross-sectional, case–control, within-subject cross-randomized controlled trial, while performing different tasks assessing emotion recognition. Correct responses, response times, and errors of omission and commission on three different computerized emotion recognition tasks were assessed as main outcomes. Simultaneous recordings of electrocardiography and electro dermal activity, as well as sampling of saliva for the determination of α-amylase, were used to quantify the effects on autonomic nervous system function.
Results
tVNS had no effect on the recognition of gradually or static expressed emotions but altered response inhibition on the emotional Go/NoGo-task. Specifically, tVNS increased the likelihood of omitting a response toward sad target-stimuli in adolescents with MDD, while decreasing errors (independent of the target emotion) in controls. Effects of acute tVNS on autonomic nervous system function were found in non-depressed controls only.
Conclusions
Acute tVNS alters the recognition of briefly presented facial expressions of negative valence in adolescents with MDD while generally increasing emotion recognition in controls. tVNS seems to specifically alter early visual processing of stimuli of negative emotional valence in MDD. These findings suggest a potential therapeutic benefit of tVNS in adolescent MDD that requires further evaluation within clinical trials.
Electrocardiograms (ECGs) are frequently recorded in primary care for screening purposes. An ECG is essential in diagnosing atrial fibrillation, and ECG abnormalities are associated with cardiovascular events. While recent studies show that ECGs adequately reclassify a proportion of patients based on the clinical risk score calculations, there are no data to support that this also results in improved health outcomes. When applied for screening for atrial fibrillation, more cases are found with routine care, but this would be undone when physicians would perform systematic pulse palpation. In most studies, the harms of routine ECG use (such as unnecessary diagnostic testing, emotional distress, increased health expenses) were poorly documented. As such, the routine performing of ECGs in asymptomatic primary care patients, whether it is for cardiovascular disease risk assessment or atrial fibrillation, cannot be recommended.
Migraine is a common neurovascular disease characterised with recurrent attacks by pain-free periods. It has been suggested that both sympathetic and parasympathetic dysfunctions play a role in its pathophysiology.
Aim:
The aim of our study was to investigate the ECG changes during attack-free period in children with migraine, in terms of QTc interval, QTc, and P-wave dispersion to evaluate the autonomic nervous system disturbance.
Methods:
Sixty children who were diagnosed with migraine were included as patient group and 50 healthy, age- and body mass index-matched children who were examined for innocent murmur were included as control group. The patients’ routine ECG records were screened from the outpatient clinic files. The durations of P-wave, QT, and QTc intervals and dispersion values and heart rates (beats/minute) were compared between the patient and control groups.
Results:
P maximum and P dispersion were significantly higher, and P minimum was significantly lower in the migraine group compared with the control group. QT–QTc maximum and QT–QTc dispersion were significantly higher and QT–QTc minimum was significantly lower in the migraine group compared with the control group.
Conclusion:
According to our findings, although migraine patients were asymptomatic and no arrhythmia was detected in the surface ECG, sympathovagal balance in the sympathetic system, which may be disrupted in favour of the sympathetic system, should continue even in the attack-free period, and we should be careful in terms of serious arrhythmias that may develop in these patients.
Lightning strike is an infrequent natural phenomenon with serious medical complications, like multiple organ damage, and it is associated with increased risk of mortality. Cardiovascular complications are among the most hazardous complications of lightning strike. Lightning strike can cause various serious consequences ranging from electrocardiographic changes to death. We reported a 21-year-old patient with no cardiovascular risk factors struck by lightning and presented by inferior ST elevated myocardial infarction (MI). The patient was followed up in the intensive care unit and MI complication did not develop during follow-up. The patient was lost due to multi-organ failure after 20 hours.
Hydatid disease is a zoonotic parasitic infection endemic in livestock-raising countries. Isolated cardiac hydatid cyst is a very rare disease, and chest pain, palpitations, cough, and dyspnoea are the most common presenting symptoms. Here a case of isolated cardiac hydatid cyst in a female patient with chest pain and electrocardiographic changes mimicking myocardial ischaemia is presented.
Field identification of ST-elevation myocardial infarction (STEMI) and advanced hospital notification decreases first-medical-contact-to-balloon (FMC2B) time. A recent study in this system found that electrocardiogram (ECG) transmission following a STEMI alert was frequently unsuccessful.
Hypothesis
Instituting weekly test ECG transmissions from paramedic units to the hospital would increase successful transmission of ECGs and decrease FMC2B and door-to-balloon (D2B) times.
Methods
This was a natural experiment of consecutive patients with field-identified STEMI transported to a single percutaneous coronary intervention (PCI)-capable hospital in a regional STEMI system before and after implementation of scheduled test ECG transmissions. In November 2014, paramedic units began weekly test transmissions. The mobile intensive care nurse (MICN) confirmed the transmission, or if not received, contacted the paramedic unit and the department’s nurse educator to identify and resolve the problem. Per system-wide protocol, paramedics transmit all ECGs with interpretation of STEMI. Receiving hospitals submit patient data to a single registry as part of ongoing system quality improvement. The frequency of successful ECG transmission and time to intervention (FMC2B and D2B times) in the 18 months following implementation was compared to the 10 months prior. Post-implementation, the time the ECG transmission was received was also collected to determine the transmission gap time (time from ECG acquisition to ECG transmission received) and the advanced notification time (time from ECG transmission received to patient arrival).
Results
There were 388 patients with field ECG interpretations of STEMI, 131 pre-intervention and 257 post-intervention. The frequency of successful transmission post-intervention was 73% compared to 64% prior; risk difference (RD)=9%; 95% CI, 1-18%. In the post-intervention period, the median FMC2B time was 79 minutes (inter-quartile range [IQR]=68-102) versus 86 minutes (IQR=71-108) pre-intervention (P=.3) and the median D2B time was 59 minutes (IQR=44-74) versus 60 minutes (IQR=53-88) pre-intervention (P=.2). The median transmission gap was three minutes (IQR=1-8) and median advanced notification time was 16 minutes (IQR=10-25).
Conclusion
Implementation of weekly test ECG transmissions was associated with improvement in successful real-time transmissions from field to hospital, which provided a median advanced notification time of 16 minutes, but no decrease in FMC2B or D2B times.
We describe the case of a 17-year-old male soccer player with T-wave inversion in precordial leads in resting electrocardiography, which also disclosed sinus bradycardia, early repolarization, and increased QRS voltage. These findings strongly suggested cardiomyopathy. The patient’s T-wave inversion disappeared during only 2 weeks of detraining, and it re-appeared 2 weeks after resumption of intensive training. This sudden change in electrocardiographic parameters over a short period helped in identifying the adolescent as having athlete’s heart.
The American Heart Association (AHA; Dallas, Texas USA) and European Resuscitation Council (Niel, Belgium) cardiac arrest (CA) guidelines recommend the intraosseous (IO) route when intravenous (IV) access cannot be obtained. Vasopressin has been used as an alternative to epinephrine to treat ventricular fibrillation (VF).
Hypothesis/Problem
Limited data exist on the pharmacokinetics and resuscitative effects of vasopressin administered by the humeral IO (HIO) route for treatment of VF. The purpose of this study was to evaluate the effects of HIO and IV vasopressin, on the occurrence, odds, and time of return of spontaneous circulation (ROSC) and pharmacokinetic measures in a swine model of VF.
Methods
Twenty-seven Yorkshire-cross swine (60 to 80 kg) were assigned randomly to three groups: HIO (n=9), IV (n=9), and a control group (n=9). Ventricular fibrillation was induced and untreated for two minutes. Chest compressions began at two minutes post-arrest and vasopressin (40 U) administered at four minutes post-arrest. Serial blood specimens were collected for four minutes, then the swine were resuscitated until ROSC or 29 post-arrest minutes elapsed.
Results
Fisher’s Exact test determined ROSC was significantly higher in the HIO 5/7 (71.5%) and IV 8/11 (72.7%) groups compared to the control 0/9 (0.0%; P=.001). Odds ratios of ROSC indicated no significant difference between the treatment groups (P=.68) but significant differences between the HIO and control, and the IV and control groups (P=.03 and .01, respectively). Analysis of Variance (ANOVA) indicated the mean time to ROSC for HIO and IV was 621.20 seconds (SD=204.21 seconds) and 554.50 seconds (SD=213.96 seconds), respectively, with no significant difference between the groups (U=11; P=.22). Multivariate Analysis of Variance (MANOVA) revealed the maximum plasma concentration (Cmax) and time to maximum concentration (Tmax) of vasopressin in the HIO and IV groups was 71753.9 pg/mL (SD=26744.58 pg/mL) and 61853.7 pg/mL (SD=22745.04 pg/mL); 111.42 seconds (SD=51.3 seconds) and 114.55 seconds (SD=55.02 seconds), respectively. Repeated measures ANOVA indicated no significant difference in plasma vasopressin concentrations between the treatment groups over four minutes (P=.48).
Conclusions
The HIO route delivered vasopressin effectively in a swine model of VF. Occurrence, time, and odds of ROSC, as well as pharmacokinetic measurements of HIO vasopressin, were comparable to IV.
BurgertJM, JohnsonAD, Garcia-BlancoJ, FultonLV, LoughrenMJ. The Resuscitative and Pharmacokinetic Effects of Humeral Intraosseous Vasopressin in a Swine Model of Ventricular Fibrillation. Prehosp Disaster Med. 2017;32(3):305–310.