We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Now in Boston, Weinberg describes how his earlier work on current algebra led to effective field theory. With the Vietnam War going on, JASON work focuses on the war effort. In 1967, Weinberg takes up a lectureship at MIT and published his most-cited paper, “A Model of Leptons,” which heralded electroweak theory. He attends the Solvay conference in Brussels in 1967, but misses being in the group photo. Back in Boston, Weinberg discusses making friends through his election to the American Academy of Arts and Sciences. He becomes involved in an independent study of the US’ anti-ballistic missile program, concluding that this would hasten the arms race between the US and the Soviet Union.
This Element offers an introduction to selected philosophical issues that arise in contemporary particle physics, aimed at philosophers who have limited prior exposure to quantum field theory. One the one hand, it critically surveys philosophical work on the representation of particles in quantum field theory, the formal machinery and conceptual implications of renormalization and renormalization group methods, and ontological and methodological questions raised by the use of effective field theory techniques in particle physics. On the other, it identifies topics in particle physics that have not yet received philosophical attention and sketches avenues for philosophical analysis of those topics. The primary aim of the Element is to provide philosophers of physics with an entry point into the literature on the philosophy of particle physics and identify interesting directions for future research for students and researchers alike.
As a short introduction to this chapter we first briefly summarize the in-in or closed-time-path (CTP) functional formalism and evaluate the CTP effective action for a scalar field in Minkowski spacetime. We then consider N quantum matter fields interacting with the gravitational field assuming an effective field theory approach to quantum gravity and consider the quantization of metric perturbations around a semiclassical background in the CTP formalism. A suitable prescription is given to select an asymptotic initial vacuum state of the interacting theory; this prescription plays an important role in calculations in later chapters. We derive expressions for the two-point metric correlations, which are conveniently written in terms of the CTP effective action that results from integrating out the matter fields by rescaling the gravitational constant and performing a 1/N expansion. These correlations include loop corrections from matter fields but no graviton loops. This is achieved consistently in the 1/N expansion, and is illustrated in a simplified model of matter–gravity interaction.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.