We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A vehicle in an airstream sets up a pressure field on its surface, resulting in forces acting on it. Thus, the aerodynamic design task becomes: determine the shape that produces a surface pressure distribution yielding optimal flight performance. Based on the principles of flow physics, computational fluid dynamics (CFD) maps out how an aircraft's shape affects the flow patterns around it. Combined with mathematical techniques for shape optimization, CFD offers a powerful tool for sophisticated aerodynamic design. The goal is to achieve those vital features stemming from the concept of a "healthy flow," namely that these specific flow patterns and associated surface pressures are efficient means of generating aerodynamic lift with acceptable drag and are capable of persisting in a steady and stable form over ranges of Mach numbers, Reynolds numbers, angles of incidence, and sideslip embracing the flight envelope of the aircraft. In the parlance of multidisciplinary design and optimization, this chapter talks about the level of fidelity of the models and solutions. L0 methods are based on empiricisms and statistics. L1–L3 are physics-based models. The governing equations in L1 are linear potential flow, in L2 are inviscid compressible flow, and in L3 are nonlinear viscous turbulent flow.
This modern text presents aerodynamic design of aircraft with realistic applications, using CFD software and guidance on its use. Tutorials, exercises, and mini-projects provided involve design of real aircraft, ranging from straight to swept to slender wings, from low speed to supersonic. Supported by online resources and supplements, this toolkit covers topics such as shape optimization to minimize drag and collaborative designing. Prepares seniors and first-year graduate students for design and analysis tasks in aerospace companies. In addition, it is a valuable resource for practicing engineers, aircraft designers, and entrepreneurial consultants.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.