We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mutations in the gap junction protein beta-2 gene (‘GJB2’) are known to be responsible for mild to profound congenital and late-onset hearing loss. This study aimed to investigate the molecular basis of progressive hearing loss compared with non-progressive hearing loss.
Methods:
Following clinical otorhinolaryngological evaluation, a genetic analysis was performed in a cohort of 72 patients with progressive sensorineural hearing loss.
Results:
Pathological genotypes were established in 16 patients (22.2 per cent). Six different gap junction protein beta-2 gene mutations were detected in 15 patients, with the c.35delG mutation responsible for 56 per cent of the mutated alleles. A novel gap junction protein beta-6 gene (‘GJB6’) mutation (p.Met203Val) was observed in one patient with mild progressive hearing loss.
Conclusion:
Analyses of gap junction protein beta-2 and -6 genes revealed that similar pathological genotypes, occurring with similar frequencies, were responsible for progressive hearing loss, compared with reported genotypes for non-progressive hearing loss patients. Thus, genotype cannot be used to differentiate non-progressive from progressive hearing loss cases; in this study, patients both with and without an established pathological genotype had a similar clinical course.
To investigate the prevalence of mutations in the coding exon of the GJB2 gene in Iranian children with cochlear implants, and to compare the outcomes of auditory perception and speech production in cochlear-implanted children with and without GJB2 mutation.
Materials and methods:
One hundred and sixty-six prelingually deaf children who had undergone cochlear implantation at the Iranian Cochlear Implant Center, Tehran, were selected from a pool of 428 implanted children. The prevalence of GJB2 gene mutations was assessed using nested polymerase chain reaction and direct sequencing. To enable comparisons, we also identified 36 implanted children with non-GJB2 deafness. Patients' speech perception and speech production were assessed using the Categorization of Auditory Performance and Speech Intelligibility Rating scales.
Results:
Thirty-three of 166 probands (19.9 per cent) were found to have GJB2 deafness-causing allele variants and were diagnosed with DFNB1 deafness. Results also indicated a significant improvement in speech perception and production scores in both GJB2 and non-GJB2 patients over time.
Conclusion:
Children with GJB2-related deafness benefit from cochlear implantation to the same extent as those with non-GJB2-related deafness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.