We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate hospital-level variation in using first-line antibiotics for Clostridioides difficile infection (CDI) based on the burden of laboratory-identified (LabID) CDI.
Methods:
Using data on hospital-level LabID CDI events and antimicrobial use (AU) for CDI (oral/rectal vancomycin or fidaxomicin) submitted to the National Healthcare Safety Network in 2019, we assessed the association between hospital-level CDI prevalence (per 100 patient admissions) and rate of CDI AU (days of therapy per 1,000 days present) to generate a predicted value of AU based on CDI prevalence and CDI test type using negative binomial regression. The ratio of the observed to predicted AU was then used to identify hospitals with extreme discordance between CDI prevalence and CDI AU, defined as hospitals with a ratio outside of the intervigintile range.
Results:
Among 963 acute-care hospitals, rate of CDI prevalence demonstrated a positive dose–response relationship with rate of CDI AU. Compared with hospitals without extreme discordance (n = 902), hospitals with lower-than-expected CDI AU (n = 31) had, on average, fewer beds (median, 106 vs 208), shorter length of stay (median, 3.8 vs 4.2 days), and higher proportion of undergraduate or nonteaching medical school affiliation (48% vs 39%). Hospitals with higher-than-expected CDI AU (n = 30) were similar overall to hospitals without extreme discordance.
Conclusions:
The prevalence rate of LabID CDI had a significant dose–response association with first-line antibiotics for treating CDI. We identified hospitals with extreme discordance between CDI prevalence and CDI AU, highlighting potential opportunities for data validation and improvements in diagnostic and treatment practices for CDI.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.