We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Exposure to cisplatin leads to cochlear cell death by apoptosis; these changes are most marked on the seventh day after exposure. Heat shock proteins are induced in inner ear cells in response to a variety of stimuli. This study examined the role of heat shock protein 70 in cisplatin-induced cochlear cell death.
Methods:
Fifty-six Sprague–Dawley rats were involved. Some were injected with cisplatin (5 mg/kg body weight), some with cisplatin plus the caspase inhibitor Z-Asp(OMe)-Glu(OMe)-Val-Asp(OME)-fluoromethylketone (5 mg/kg body weight) and others were left as controls (being injected only with saline). Seven days later, we examined the expression of heat shock protein 70 and several other apoptosis-related proteins within the rat cochlear cells; we also assessed total superoxide dismutase activity, auditory brainstem response and auditory steady state response.
Results:
Seven days after cisplatin injection, significantly increased expression of heat shock protein 70 was found within the rat cochleae. This correlated with increased executioner caspase levels, total superoxide dismutase activity and auditory brainstem response thresholds, and a significant elevation in auditory steady state response thresholds. Inhibition of caspase-3 activity significantly reduced cochlear heat shock protein 70 expression and total superoxide dismutase activity, and improved auditory brainstem response and auditory steady state response thresholds.
Conclusions:
Seven days after cisplatin exposure, we found disturbances of the cochlear cellular machinery involving heat shock protein 70, other apoptotic proteins and total superoxide dismutase.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.