We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a “splicing formula” for the LMO invariant, which is the universal finite-type invariant of rational homology three-spheres. Specifically, if a rational homology three-sphere M is obtained by gluing the exteriors of two framed knots
$K_1 \subset M_1$
and
$K_2\subset M_2$
in rational homology three-spheres, our formula expresses the LMO invariant of M in terms of the Kontsevich–LMO invariants of
$(M_1,K_1)$
and
$(M_2,K_2)$
. The proof uses the techniques that Bar-Natan and Lawrence developed to obtain a rational surgery formula for the LMO invariant. In low degrees, we recover Fujita’s formula for the Casson–Walker invariant, and we observe that the second term of the Ohtsuki series is not additive under “standard” splicing. The splicing formula also works when each
$M_i$
comes with a link
$L_i$
in addition to the knot
$K_i$
, hence we get a “satellite formula” for the Kontsevich–LMO invariant.
We apply the concept of braiding sequences to link polynomials to show polynomial growth bounds on the derivatives of the Jones polynomial evaluated on S1 and of the Brandt–Lickorish–Millett–Ho polynomial evaluated on [–2, 2] on alternating and positive knots of given genus. For positive links, boundedness criteria for the coefficients of the Jones, HOMFLY and Kauffman polynomials are derived. (This is a continuation of the paper ‘Applications of braiding sequences. I’: Commun. Contemp. Math.12(5) (2010), 681–726.)
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.