We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the boundedness and compactness of weighted composition operators acting on weighted Bergman spaces and weighted Dirichlet spaces by using the corresponding Carleson measures. We give an estimate for the norm and the essential norm of weighted composition operators between weighted Bergman spaces as well as the composition operators between weighted Hilbert spaces.
We define the notion of $\unicode[STIX]{x1D6F7}$-Carleson measures, where $\unicode[STIX]{x1D6F7}$ is either a concave growth function or a convex growth function, and provide an equivalent definition. We then characterize $\unicode[STIX]{x1D6F7}$-Carleson measures for Bergman–Orlicz spaces and use them to characterize multipliers between Bergman–Orlicz spaces.
where ${\it\mu}$ is a complex Borel measure with $|{\it\mu}|(\mathbb{D})<\infty$. We generalize this result to all Besov spaces $B_{p}$ with $0<p\leq 1$ and all Lipschitz spaces ${\rm\Lambda}_{t}$ with $t>1$. We also obtain a version for Bergman and Fock spaces.
This paper studies the relationship between vector-valued $\text{BMO}$ functions and the Carleson measures defined by their gradients. Let $dA$ and $dm$ denote Lebesgue measures on the unit disc $D$ and the unit circle $\mathbb{T}$, respectively. For $1\,<\,q\,<\,\infty $ and a Banach space $B$, we prove that there exists a positive constant $c$ such that
$$\underset{{{z}_{0}}\in D}{\mathop{\sup }}\,{{\int }_{D}}{{\left( 1-\left| z \right| \right)}^{q-1}}{{\left\| \nabla f\left( z \right) \right\|}^{q}}{{P}_{{{Z}_{0}}}}\left( z \right)dA\left( z \right)\le {{c}^{q}}\underset{{{z}_{0}}\in D}{\mathop{\sup }}\,{{\int }_{\mathbb{T}}}{{\left\| f\left( z \right)-f\left( {{z}_{0}} \right) \right\|}^{q}}{{P}_{{{z}_{0}}}}\left( z \right)dm\left( z \right)$$
holds for all trigonometric polynomials $f$ with coefficients in $B$ if and only if $B$ admits an equivalent norm which is $q$-uniformly convex, where
$${{P}_{{{z}_{0}}}}\left( z \right)=\frac{1-|{{z}_{0}}{{|}^{2}}}{|1-{{{\bar{z}}}_{0}}z{{|}^{2}}}.$$
The validity of the converse inequality is equivalent to the existence of an equivalent $q$-uniformly smooth norm.
Let $\cal D $ denote the collection of dyadic
intervals in the unit interval. Let $\tau$ be a rearrangement of the dyadic intervals. We study the
induced operator
$$ Th_I = h_{\tau(I)}$$
where $h_I$ is the $L^{\infty}$ normalized
Haar function. We find geometric conditions on $\tau$ which are necessary and sufficient for $T$ to be
bounded on $BMO$. We also characterize the rearrangements of the $L^p$ normalized Haar system in
$L^p.$