We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If you were taught Mendelian genetics at school (see Figures 2.1 and 2.2) you should be aware that it is an oversimplified model that does not work for most cases of inherited characteristics. Human eye color is a textbook example of a monogenic characteristic. It refers to the color of the iris – the colored circle in the middle of the eye. The iris comprises two tissue layers, an inner one called the iris pigment epithelium and an outer one called the anterior iridial stroma. It is the density and cellular composition of the latter that mostly affects the color of the iris. The melanocyte cells of the anterior iridial stroma store melanin in organelles called melanosomes. White light entering the iris can absorb or reflect a spectrum of wavelengths, giving rise to the three common iris colors (blue, green–hazel, and brown) and their variations. Blue eyes contain minimal pigment levels and melanosome numbers; green–hazel eyes have moderate pigment levels and melanosome numbers; and brown eyes are the result of high melanin levels and melanosome numbers. Textbook accounts often explain that a dominant allele B is responsible for brown color, whereas a recessive allele b is responsible for blue color (Figure 4.1). According to such accounts, parents with brown eyes can have children with blue eyes, but it is not possible for parents with blue eyes to have children with brown eyes. This pattern of inheritance was first described at the beginning of the twentieth century and it is still taught in schools, although it became almost immediately evident that there were exceptions, such as that two parents with blue eyes could have offspring with brown or dark hazel eyes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.