We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Continuous positive airway pressure (CPAP) improves outcomes in patients with respiratory distress. Additional benefits are seen with CPAP application in the prehospital setting. Theoretical safety concerns regarding Basic Life Support (BLS) providers using CPAP exist. In Delaware’s (USA) two-tiered Emergency Medical Service (EMS) system, BLS often arrives before Advanced Life Support (ALS).
Hypothesis
This study fills a gap in literature by evaluating the safety of CPAP applied by BLS prior to ALS arrival.
Methods
This was a retrospective, observational study using Quality Assurance (QA) data collected from October 2009 through December 2012 throughout a state BLS CPAP pilot program; CPAP training was provided to BLS providers prior to participation. Collected data include pulse-oximetry (spO2), respiratory rate (RR), heart rate (HR), skin color, and Glasgow Coma Score (GCS) before and after CPAP application. Pre-CPAP and post-CPAP values were compared using McNemar’s and t-tests. Advanced practitioners evaluated whether CPAP was correctly applied and monitored and whether the patient condition was “improved,” “unchanged,” or “worsened.”
Results
Seventy-four patients received CPAP by BLS; CPAP was correctly indicated and applied for all 74 patients. Respiratory status and CPAP were appropriately monitored and documented in the majority of cases (98.6%). A total of 89.2% of patients improved and 4.1% worsened; CPAP significantly reduced the proportion of patients with SpO2<92%, RR>24, and cyanosis (P<.01). The GCS improved from mean (standard deviation [SD]) 13.9 (SD=1.9) to 14.1 (SD=1.9) after CPAP (mean difference [MD]=0.17; 95% CI, -0.49 to 0.83; P=.59). The HR decreased from 115.7 (SD=53) to 105.1 (SD=37) after CPAP (MD=-10.9; 95% CI, -3.2 to -18.6; P<.01). The SpO2 increased from 80.8% (SD=11.4) to 96.9% (SD=4.2) after CPAP (MD=17.8; 95% CI, 14.2-21.5; P<.01).
Conclusion
The BLS providers were able to determine patients for whom CPAP was indicated, to apply it correctly, and to appropriately monitor the status of these patients. The majority of patients who received CPAP by BLS providers had improvement in their clinical status and vital signs. The findings suggest that CPAP can be safely used by BLS providers with appropriate training.
SahuN, MatthewsP, GronerK, PapasMA, MegargelR. Observational Study on Safety of Prehospital BLS CPAP in Dyspnea. Prehosp Disaster Med. 2017;32(6):610–614.
This report highlights innovative ways of overcoming difficulties in delivering effective continuous positive airway pressure in an extremely preterm baby with bilateral cleft lip and cleft palate.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.