We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The chapter presents the key properties and the evolution of satellite measurements before diving into the history of various explanations of the CMB. The shape of the CMB spectrum reflecting the black body radiation and its unusual isotropy are the essential properties telling us about the origin, but its temperature is also dependent on other contingent factors. The chapter briefly discusses details of the physical process behind such properties and the relevance of their ever-more precise satellite measurements and presents these in diagrams.
Which of the four-parameter family of Friedman–Robertson–Walker (FRW) cosmological models best fits our universe and why? This chapter addresses these two central questions for observation and theory in cosmology. Of the four parameters that define an FRW model, only two are determined by observations so far: the Hubble constant; and the ratio of energy density in radiation to the critical density. To determine the others, the spacetime geometry of the universe must be measured on large scales through a study of how matter moves through it. We describe two illustrative ways of doing that – one based on observations of distant supernovae, and the other on observations of the cosmic background radiation. Remarkably, the best cosmological parameter values are consistent with the universe being spatially flat – right on the borderline between positive and negative spatial curvature.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.