We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let {Fn}n ≧ 0 be a sequence of c.d.f. and let {Rn}n ≧ 1 be the sequence of record values in a non-stationary record model where after the (n − 1)th record the population is distributed according to Fn. Then the equidistribution of the nth population and the record increment Rn – Rn– 1 (i.e. Rn – Rn– 1~ Fn) characterizes Fn to have an exponentially decreasing hazard function. To be more precise Fn is the exponential distribution if the support of Rn– 1 generates a dense subgroup in and otherwise the entity of all possible solutions can be obtained in the following way: let for simplicity the above additive subgroup be any c.d.f. F satisfying F(0) = 0, F(1) < 1 can be chosen arbitrarily. Setting λ = – log(1 – F(1)), Fn(x) = 1 – F(x – [x])exp(–λ [x]) is an admissible solution coinciding with F on the interval [0, 1] ([x] denotes the integer part of x). Simple additional assumptions ensuring that Fn is either exponential or geometric are given. Similar results for exponential or geometric tail distributions based on the independence of Rn– 1 and Rn – Rn– 1 are proved.
The paper gives a survey of the theory of univariate characteristic functions. These functions were originally introduced as tools in the study of limit theorems but it was later realized that they had an independent mathematical interest. Those parts of the theory which can be found in textbooks are treated only briefly; the main emphasis is placed on more recent developments and areas where active research is still in progress.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.