We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The general definition of elasticity is given, and as a special case the linear elasticity with Hooke’s law, is presented together with its derivation on the basis of the Cayley–Hamilton theorem. Some applications of elasticity theory in soil mechanics are presented.
A brief coverage of the mechanics of contact problems is presented. The governing equations for three-dimensional axisymmetric elasticity problems in cylindrical coordinates are first formulated, which is followed by the solutions to classical problems of a concentrated force within an infinite medium (Kelvin problem), and a concentrated force at the boundary of a half-space (Boussinesq problem). The stress fields in a half-space loaded by an elliptical and a uniform pressure distribution over a circular portion of its boundary are presented. Indentation by a spherical ball and by a cylindrical circular indenter are analyzed. The second part of the chapter is devoted to Hertzian contact problems. The nonlinear force–displacement relation is derived for elastic contact of two spherical bodies pressed against each other by two opposite forces. The elastic contact of two circular cylinders is also considered. The contact pressure and the maximum shear stress are determined. The approach of the centers of the cylinders requires the consideration of the local contact stresses, as well as the stresses within the bulk of each cylinder.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.